..ll

File No. §360-30
GY28-Zile--S

Program

Version 8.1

IBM System/360 Time Sharing System
Access Methods

This publication describes the intermal logic of the
nonresident access metnods used in TSS/360. (The
facility which controls most conversational input/output
in TSS/360, tne resident terminal access method {RTAM) is
part of the resident supervisor and is described in IBM
system/360 Time Sharing System: Resident Supervisor
rrogram Logic Manual, GY28-2012.)

The nonresident access methods are:

s« The virtual access methods (VAM), used to store and
retrieve page—organized data located on direct access
devices, and including the virtual sequential {VSAM) ,
virtual index sequential (VISAM), and virtual
partitioned (VPAM) access methods.

e The sequential access methods (SAM), used to access
05/360-oriented data sets on tape Or direct access
devices, and including the basic seguential (BSAM)
and gueued sequential (QGAM) access methods.

« The multiple sequential access method (MsSAaM), used
for efficient input/output with unit record
equipment.

e A facility, IOREL, which allows a user to provide his
own access methci with « private device.

s The terminal access method (TAM), which allows
input/output with specific terminals.

e« A Terminal Task Control module which provides task
control for multiterminal task (MTT) applications.

For each access method, an overview, routine
descriptions, and flowcharts are provided.

This material is intended for persons involved in
program maintenance, and system programmers who are
altering the program design. It can be used to locate
specific areas of the program, and it enables the reader
to relate these areas to the corresponding program
listings. Program icgic information is not necessary for
the use and operation of the program.

Logic

PREFACE

This publication describes the access
methods in TSS5/7360 (except for the resident
terminail access mechod®). It can be read
selectively for a general understanding of
4 partieular access method, or 1t can be
used as a guide to more detalleld
information in an object program listing ot
a particular access method object module.

HOW THIS BOOK I5 ORGANIZEL

The access methods dare grouped 1n this
pbook into four parts:

e Basic Sequential Access Method (BSAMY,
Multiple Sequential Access Method
{MSAM), Terminal Access Method (TAM),
and IOREQ.

e Virtual Access Methods (VAY), including
Virtual sequential {(VSAM), Virtual
Index Sequential (VISAM), and Virtual
Partitioned {VPAM) Access Methods.

¢ Queusd Sequential Access Method (QSAM)Y.

e Terminal Task Control {a facility which
controls tasks that have Multi-Terminal
Task (MTT) applications).

For each access method, an overview and
individual routine descriptions are
provided. Flowcharts for all access
methods are grouped in one section.

TG USE Th1S BOOK, YOU NEED:

¢See Resident Supervisor Progqram Logic
Manual, GY28-2012.

Fifth Edition (September 1971)

This is a minor revision of GY28-20164
incorporating TNL GN28-3212.

This edition i3 current with Version 8, Modification i,
of the i8M Systems 360 Time Sharing System (Tsur/360),
and remains in effect for all subsequent versions or
nodifications of TSS5/360 unless otherwise noted.
Significant changes nr additions to this publication
will be provided in new editions or Technical
Newsletters. Before using this publication, refer to
the latest edition of 1IBM System/36J Time Sharing
system: Addendum, GC28-2083, which may contdin
information pertinent to the topics covered 1n this
wdition. The Addendum also lists the editions of all
TS5/ 160 publications that are applicable and current.

General tamiliarity with TSS/360
assembier language and the main concepts of
THS/7360.

GENERAL BOORS TO REFER TO:

iBM system/ 360 Principles of Operation,
GA22-6821.

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003.

BOOKS RELATED TO ACCESS METHODS:

Access methods are usually invoked as
the result of user- or systeminitiated
macro instructions described in:

IBM System/ 360 Time Sharing System:
Assembler User Macro Instructions,
GC28-2004.

A complete explanation of data
management in TSS/360 from the user point
of view is prowvided in:

IBM System/360 Time Sharing System:
Lata Management Facilities,
GC28-2056.,

TO FIND AN ACCESS METHOD:

See the Table of Contents.

TO FIND A PARTICULAR ROUTINE {(MODULE):

See Appendix C, Access Methods Module
Directory.

Requests for copies of IBM publications should te made to your 1InM
regresentative or to the IBM branch office serving your locality.

A form is pruvided at the back of this jpublication for reader's

comments.

1BM Corporation, Department 643, Neighborhood Road, kingston,

124601

® copyright International Business Machines Corporation 1967,

1969, 1970, 1971

1f the form has been removed, comments may rte addressed to

N.Y.

1968,

PART 1: ACCESL METHOD FOR BSAM, MUAM, TAM AND

SECTION 1: INT/ODUCTION . .

Linkage to the Accens Methods Routines

Access Mot hod Phases e e e e e e s
Macro Inttructions e e e e .
control Rlocks e e e e e e
BSAM OVERVIEW « . .+ .
MSAM Overview . .« « « « « « -

Data Sets, Bufters, and Blocking Factors

Schematic Description
MSAM Glossdry .« « o o« 4 . . e . .
RTAM OVERVIEW « <« « « « « « « =«
TAM OVEIVIEOW « & « o « « =« <« « « « =« =
IOREQ Overview e e e e e e s e e e .

SECTION 2: OPEN PROCESSING

Common Processing . . - « e e .
Open Common Routlne (CACLA) « e e .
SAM Open Processing . . - .« <« « < « - -

SAM Open Mainline Routine (CZCWO) .
Tape Open Routine (CZCWT)
DA Open Routine (CZCWD)
DEB PROCESSING e e e e e e e e s e e .
Build Common DEB Routine (CZCWB) .
Build DA DEB Routine (CZCWL) e e e
DSCB Processing . . « « « « =« = =« « o =«
Read Format-3 DSCBs Routine (CZCWR)
Set DSCB Routine (CZCXS) e e e e m
MSAM Processing . .« -« « - - e e e e e
MSAM Open Routine (CZCMC) e e e e e
SETUR Routine (CZCMD) « .« =

TAM Processing . e e e e e e e e e
TAM Open Routlne (CZCYA)
IOR Processing . . -« . « e e e e .

IOR Open Routine (CZCSC) e e e .

SECTION 3: READ/WRITE . . . « « « « & =«
Read/Write Processing . « « « « « =« =+ =
BSAM Read/Write Routine (CZCRA) . .
DOMSAM Routine (CZCME) « e« & e =
MSAM Read/Write Routine (CZCMF) . .
TAM Read/Write Routine (CZCYM) . .
IOREQ Routine (CZCSB) . .« « o« « « =«

SECTION 4: POSTING AND CHECK
posting and Check Processing
SAM Posting and Error Retry Routine
DA Error Retry Routine (CZCRH) . .

PR

-

TOREQ

(CZCKRP) . .

«

MSAM Posting and Error Retry Routine (CZCMG)

Central Installation Devices . . . -
Remote Job Entry Devices - .
TAM Posting Routine (CZCZA)
IOREQ Posting Routine (CZCEE) . . .
Check Routine (CZCRC)

SECTION 5: CLOSE e e e e s e e e e e
Close Processing . . . e e e e e .
Close Common Routlne (CZCLB) e e s
SAM Close Routine {(CZCWC)
MSAM Finish Routine (CZCMH)
MSAM Close Routine (C2ZCMI) e e e

CONTENT.

1
. 3
. 4
-)
- ‘)
. 7
.- . 5
. 3]
. 9
. . 10
. . 10
. 10
R
. - 14
. . 1u
. . 14
. . 15
. . 15
. . 16
- .17
. .17
.. 17
. . 18
. . 18
< .1
. . 19
. . 19
. . 19
o021
. . 24
. . 24
. 26
. 26
. . 28
. . 28
. . 28
. . 30
. - 34
. . 35
.. 41
. . U6
. . ub
. . ueé
. . 50
. . 54
. . 5S4
. . 59
. . 60
. . 65
. . 66
. . 63
. . b8
. . 68
. . b8
. . 69
.71

TaM Close xout tne (CZCYGY o v e e
IGR Close woutine {CZCSDY “ e e e A .

SeCTIUN 6: ROUTINES SPECIFICALLY DESIGNED FOR BSAM e

Label Processors . . o . L0 o L L. L L. - .
Tape Volum Label Routine (CZCWX)
Tape Data Set Label rRoutine (CZCWY)

A Input Label Routine (CZCXN) e e e e e e e e e e e
LA Qutput Label Routine (CZCXU)
EOV Processors L T
Force tnd of Volume Routine (CZCLDY
Mainline EOV Rcoutine {(CZCXE) S e e e e e e e e e e e
Tape Input ECV Routine (CZCXT)
Tape Output BOV Routine (CZCXO) v o v o v v i .
DA Input EOV Routine (CZCXI1) e e e e e e e e e e
OA Gutput EOV Routine (CZCXD) . . + « o o o o u o o . .
Concatenation Routine (CZCXX) .+ o o v o o o o o v v ..

R5AM User Routines . S e e e s e e e e e e e e e e e s
Note Routine (LZLRN! L
Point Routine (CZCRM} U

Backspace Routine (CZCRGY
fantrol Routine (CZCKBY « . o v o o
5C1I Translation and Conversion Routine (CZCWA) . . .
Bu*‘erxng services . . . e e e e e e e e e e e e e e
GETPOOL KRoutine {CZCMB) C e e e e e e e e e e e e e e
GETBUF Routine (CZCMR) © s e s e e s s 4 e e e e e ..
FREEBUF Routine (CZCNA) e e e e e e
FREEPOOL Routine {CZCNB) v « w v v v v ..
BSAM Internal Control Routines . @ h e e e e e e e e e
Tape Positioning Routine (CZLNP) - . c e e e e e e
Volume Sequence Convert Routine (CZLWV) C e e e e e e
Message Writer koutipme (CZCWM) « . o o v v o .
Find Records per Track Routine (CZCRO} . « .+ o
RELFUL Routine (CZCRRY o o o v v
FULREL Routine (CZCRS) e e s e a4 e e s s e e e e e e s

PART II: VIRTUAL ACCESS METHOD (VAM) c s s e e e e e e s

SECTION 1: INTRODUCTION v v o o w v o . “ e e e a
Virtual Data Set Organization v & & v v o v o . .
Movepage Routine (CZCOC)+ v v o v o ..
The Access Methods . . e e s e e e e e e e e e e e e
Facilities Provided by VAN e e e e e a e e e e e e e e
VAM ERROR RECOVERY TECHNIQUES e e e e e
VMIER Routine (CZCEI} « v v w v v v .
VDMEP Routine (C2CQOK) v v o v v v v ..
VAM Interfaces « e .
Module Attributes L
Linkage Conventions
CONTROL BLOCKS s e e e e s e e e e e e e e e e e e e e
Interruption Storage Area (ISA) -- (CHAISA)
Task Data Definition Table (TDT) -- (CHATDT) .« .
Relative External Storage Correspondence Table (RESTBL)
Shared Data Set Table (SDST) e e e e h e e e e e e e
SDST Maintenance f e v e s e e e e 4w e e
Search SDST Routine (CZCQL) e e e e e e e e e e e e e

SECTION 2: VAM VOLUME FORMAT AND DATA SET MAINTENANCE . . .
The Data Set Control Block (DSCB) e e e e
Building and Maintadining a Data Set v « « . .
Insert/Delete Page Routine (CZCOD) c e e e e e e e e
Insert Routine (CZCOF) S e e e e e e e e e e e e e .
Expand RESTBL Routine (CZCQI) .« . v v v o o w o o o . -
kequest Page Routine (CZCOE) o v v v v 0w v w w v o .
Reclaim koutine (CZCOG) v « v w o w v v o . . .
DELVAM Routine (CZCFT) e e e s 4 e e e s e e e e e e

SECTION 3: DATA SET SHARING o v o o w w v w w v o .

72
. 73
. T4
. T4
. T4
N

78
. 78

79
. 79

79

80
. 81

82
. 82
. 83
. 83

83
. 84
. 85

86
. 86
. 87
. 87
. 89
. 90
. 90
. 90
. 91
. 92
. 93
. 94
. 95
. 95
. 97
- 99
. 99
. 99
102
.102
.103
.103
.105
.107
. 107
.107
.108
.108
.108
-110
<112
2112
<112
.118
.118
.119
.119
.120
-121
122
.123
124
.127

control Table Interlocks « « « « « « ¢« « o « =« - =
Interlock Routine (CZCOH) . . . e e e e s e
Release Interlock Routine (CZCOI)

SECTION 4: OPEN AND CLOSE PROCESSING
OPEN PROCESSING . .+ « « « « 2 s « o o o o &« 2 s = =
OPENVAM Routine (CZCCA) . . .« « « o« « = « & = =
DUPOPEN Routine (CZCEY) . . .
VSAM Open Routine (CZCOP) . .
VISAM Open Routine (CZCPZ) . .
Close Processing . . e e e e e s s v = e s
CLOSEVAM Routlne (CZCOB) . -
DUPCLOSE Routine (CZCEZ) e e
VSAM Close Routine (CZCOQ) . .
VISAM Close Routine (CZCQA) . . e e s e =
VAM ABEND Interlock Release Routine (CZCQQ)

e © » % & ® e @

SECTION S: VIRTUAL SEQUENTIAL ACCESS METHOD (VSAM)

Routines in VSAM e e e
VSAM Get Routine (CZCOR)
VvSaM PUT Routine (C2Z2C0S) . . . -
SETL Routine (CZCOT) e e e e .
PUTX Routine (CZCOU) e o e s @
FLUSHBUF Routine (CZCOV) e e e o

.
.
.
.
s
.
.
)
.
.
.

SECTION 6: VIRTUAL INDEXED SEQUENTIAL ACCESS METHOD
VISAM OVErvView . « « o« « o & o o o o s o = « = =« =
VISAM Page Formats . « . . .« -
VISAM Routines . . - e« e 2 e e s @+ e @ e @
VISAM Put Routlne (CZCPA) e o e e e
VISAM Get Routine (CZCPB) . . .
SETL Routine (CZCPC)
Read/Write, DELREC Routine (CZCPE) « e a
GETPAGE Routine (CZCPI}
Add Directory Entry Routine (CZCPL) . .

SECTION 7: VIRTUAL PARTITIONED ACCESS METHOD (VPAM)
VPAM Overview . . « « « « « =+ =« =
VPAM Control Blocks . « . « « .« = . « e e .
Partitioned Organization Dlrectory (POD) - .
Use of Member Headers in RESTBL . . . <« . .+ =«
VPAM Routines . . . “ o e e s e
Find Routine (CZCOJ) e e e s e e
Stow Routine (CZCOK) e e e s e e e
Search Routine (CZCOL) e e s s e e e
Extend POD Routine (CZCOM) e e e e e e e s
Relocate Members Routine (CZCON) e e o o =
GETNUMBR Routine (C2ZCOo0) « o o a4 s = s e

PART III: QUEUED SEQUENTIAL ACCESS METHOD (QSAM) .

SECTION 1: GENERAL DESCRIPTION . . . « = « « =
OSAM Macro Instructions . . - « « - « « & - - -
Work Area and Buffers < o + + & o -
control BlOoCKS .« « « » o o o o o « =+ - & =

SECTION 2: INTERFACE RULES AND MODULE DESCRIPTION .
QSAM Routine (CZCSA) <« « o o + o« o o = s = o =

SECTION 3: INTERNAL TOGIC -« « o« o o o o o = < = =
common Processing . . « « + « o o o o o s = e e
SYNAD Subroutine . « « < < o & o o o o e« = e
Read/Write Subroutine « ¢ « o < & =
control Subroutine . . .« - . .+ & . < o o =
Backspace Subroutine . . . o . .« . . o
point Subroutine . « . « < ¢ o s e o s = = e 0
Check Subroutine . . « - < « o o & o o o o = -
Flush Subroutine . . « « « « « « « « o = = =

-

-128
.129
-.130

-132
-132
132
.136
.137
.138
.139
.139
.141
142
.142
.142

.144
.1lu4
144
.147
.1lu8
.150
.150

.152
.152
.153
.154
.155
.157
.157
.159
.160
.162

.164
.le64
.16l
.16t
.165
-165
.165
.168
.171
172
.172
.173

.175

177
177
.178
.178

.179
.179

.186
.186
.186
.186
.186
.186
.186
.186
.186

GETIO Su
PUTIC Su
PUTXIO S
Logic of Mac
GET Macr
PUT Macr

PUTX Mac

TRUNC Ma
RELSE Ma
SETL Mac

CLOSE and FEOV Functions Pe

broutine
broutine
ubroutine
ro Services . . .
o Processing . .
o Processing . .
ro Processing . .
cro Processing

cro Processing .
ro Processing . .

PART 1IV: RTAM/MTT ACCESS METHODS

SECTION 1: MTT TERMINAL TASK CONTROL

Terminal

FREEQ Ma
LOWCHARTS
APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:

INDEX . . .

vi

Task Control Routine
MTT Enable
FIND{ Macro+ . «
READG Macro . o o « o =
WRITEQ Macro . . « +« + =«
CLEARQ Macro e e » o e

CrO « = + % & o« a

« e e & & 8 e« = =

-

SUPPORT

rformed by

(CzCTC)

-

-

-

CONTROL BLOCKS USED BY ACCESS

e« & & &

METHODS

e e & @

MODULES

MODULES CALLED BY ACCESS METHODS MODULES . .

ACCESS METHODS MODULE DIRECTORY . . .

OWKAR DSECT AND DESCRIPTICH .

s « e e

s e e =

DESCRIPTION OF FIELDS IN QSAM PORTION OF DCB

2 @ & @« @« & @ ® e

-

e &« e o

.187
.187
.187
.187
.187
.188
.189
.189
.189
.190
.191

.193
.195
.195
-195
.196
.196
.197
.197
-197
.199
. 440
Y
L448
U453
. 454

.456

Figure
Figure
Figure
Figure
Figure
DEB .

Figure
Figure
Paths

Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1.

3.

ILLUSTRATIONS

Access Method Phases for BSAM, MSAM, TAM, and IOREQ . . . 5
DEB Page Layout . . .« .« « + = =« =+ < = < = ° "7 20
DEB Work Page Layout . . - - « = = = = * e e e e . o« . 20

TAM Oper.: DEB and TOS Storage Allocation and Pointers . . 25
IOR OPEN: Basic Pointers and Data Moved from JFCB to

.« . s e

TAM Read/Write:

- e s ® ® 8 = @ e o @ o= ©

CPG 1. -ation Sequence . . - -

e e e e o2 27
T

TAM Posting: Normal Couuletion and Exception Analysis

- » - = - e = @& o ®« e ® o @« o =

Obtain Keys and Label I/0 Areas . . - - - - =° °
Retain Keys and Label I/0 Areas . . - - - = = *
How TSS/360 Handles ASCII Record Input . . - -«
How TSS/360 Handles ASCII Record Output . . . -
Tape Positions+ - - - - -t C0"
pata Positioning . . . - - . s e e -t
Skipping Files on Tape . . - - <« - = = <« °
Entry for single/Multiple Phase Message . . - -
DCB Format for VAM - « = < = = =
RESTBL Format . . « - =« =« = =« = <« = = = = °
RESTBL External Page Entry - CHAEPE . . -« « =« =
shared Data Set Table (SDST) Format - -
Linkage Relationships Among Control Blocks Used
Deleting Pages from the "In Use"” List in RESTBL
Module Interaction in VAM Open Processing . . .
Module Interaction in VAM Close Processing . .
DCBHEADER Interlock Summary . . . - = = = *© © °
VSAM Data Record and Page Formats . . s+ « + = =
VISAM Record Relationship . . . -

pPartitioned Organization Directory

- - . o« o

(POD) .

.« o« - . 61

.85
. . . . <155
. . . . J164

vii

TABLES

Table 1. BSAM, MSAM, TAM and IDREQ READ/WRITE and GET/PUT Level
Macro Instructions T e s s e e e e e e e e e e e e
Table 2. BSAM, MSAM, TAM, and IOREQ 1/0 Macro Instructions
Required for I/70 Operations « v v 2o 4 v o 4 o o v o v o o .
Table 3. BSAM, MSAM, TAM, and IOREQ Macro Instructions . . . e .
Table 4. DCB Table Fields and Flags (MSAM Section)
Table 5. Some DBP Table FieldS . . . « v v & @ o o« o v v o . . .
Table 6. Some DECB Table Fields (CHADEC) . . . ¢ . v v o o v . .
Table 7. Some DEB Table Fields v « v o o o o o« o .. .
Table 8. TAM Read/Write: Terminal Information from SDAT
Table 9. TAM Read/Write: Type Option (Hex and Mnemonic) Codes and
Description L i 0Lt e e e e e e e e e e e e e,
Table 10. TAM Read/Write: Unit Type Table Format e e
Table 11. TAM Read/Write: Terminal Library Table Format (for 2702
TLT) T e s e e s s s s 2 2 s s e e & s o s s+ e s 8 o e o 5 o = o o
Table 12. TAM Read/wWwrite: Terminal Control Program Format
Table 13. TAM Read/Write: Selected Terminal Control Information
Table Entries L L L L 0 0l e e e e e e e e e
Table 14. TAM Read/Write: Channel Command Word Generator Section .
Table 15. TAM Read/Write: Channel Command Word Generator Format .
Table 16. TAM Read/Write: Buffer Allocation Flag Bits of CCWG . .
Table 17. TAM Posting: Terminal Length Statistics
Table 18. TAM Posting: Specification of User Buffer
Table 19. TAM Posting: Expected EOL Sequence
Table 20. TAM Posting: CSW Status and Sense Data Typical Maxi
Exception Retry Counts (Extracted from CHASDT) . . « « . « o . . .
Table 21. Label 1 Fill Table v v v v o o v . e e e « o
Table 22. Label 2 Fill Table . . . 4 ¢ v v v 4 v o o o o o o o o .
Table 23. Decisions for Setting Block . . v w v & v & o o o - . .
Table 24. Abbreviations Used in Control Block Descriptions
Table 25. Selected Fields of the Interrupt Storage Area
Table 26. Selected Fields of @ JFCB . . v & v v @ o o o o o« o v .
Table 27. Selected Fields of the DCB COmMMOn . . . - . & o o o . .
Table 28. Description of the Fields Comprising the VAM Organization

.« s

-

i

Independent Working Storage v 4 v 4 uw o ow e
Table 29. Field Descriptions for the RESTBL Header -- (CHARHD) . .
Table 30. Field Descriptions for the DCB Header -- (CHADHD) . . .
Table 31. Field Description of the SDST Header -- (CHASDS)
Table 32. Field Description of a Member Entry -- (CHASDM)
Tabie 33. Field Description of a Data Set Entry -- (CHASDE) . . .

Table 34. Effect of OPEN Option on Member Interlocks in Member
Header 00 L o L s e e e e e e e e e e e .« .
Table 35. Effect of OPEN Options on Data Set Interlocks in SDST . .
Table 36. Effect of OPEN Option of VISAM Page Level Interlock . . .
Table 37. Description of DCB Working Storage Used by VSAM Routines
Table 38. FLUSHBUF Decisions to Control Buffer Allocations
Table 39. Descrintion of DCB Working Storage Used by VISAM Routines
Table 40. Fields and Codes of the DECB Referenced by VISAM Routines

(CHADEB) . © & & 4 4t v vttt v e e e d e e e e e,
Table 41. Organi:zation of a VISAM Data Set o o
Table 42. VISAM Page Formats -- Super Indexed Sequential Directory
Table 43. VISAM Vage Formats -- Data or Overflow e e .
Table 44. VISAM Page Formats -- Directory
Table 45. POD Format v v W v v 0 v v e e e e s e e
Table 46. POD Member Descriptor o o o o . . . « . .

Table 47. POD Alias DeSCriptor o 2 o v o o . . « e e e .
Table 48. RESTBL Member Headers (CHAMHD) ¢ e e e e = & o
Table 49. Usage of BSAM Modules o « v . . « o o @
Table 50. Subsection Interface« e
Table 51. Parameters and Return Codes of BSAM Modules
Table 52. Subroutine Functions “ e e s s e e e e .

viii

.110
111
.113
-114
.115
.115
-116

.128
.128
.128
~l4b
.151

152

-153
.153
.154
.154
.154
.165
.166
-167
.167
-177
.180
.181
.182

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

AR.
AB.
AC.

AG.
AH.
Al.
AJ.

AL.
BA.
BB.
BC.
BD.
BE.
CA.
CB.
CcC.
CD.
CE.
CF.
DA.
DB.
DC.
DD.
DE.
DF.
EA.
EB.
EG.
EH.
FA.
FB.
FC.
FD.
FE.
FF.
FG.
GA.
GB.
GC.
GD.
GE-.

HB.
HC.
HD.
IA.
IB.
IC.
iD.
1E.
IF.
JA.
JB.

-JcC.

JD.
KA.
KB.
KC.

Open Common - CZICLA . . .« « =«
BSAEM Open ~- CZCWO . .« « .+ « « . -
OPENTAPE - CZCWT
DAOPEN - CZCWD . - s <« =«
Build Common DEB - CICWB
Build DA DEB - CZCWL . . « =« « » =
Read Format-3 DSCB - CZCWFR =«
SETDSB ~ CZCXS + +« & « o « =
MSAM Open - CICMC . . . « . « =« =«
SETUK - CZCMD ¢« « + ¢ « o =« o = =
TAM Open - CZCYA . . .« « & « « =« =
IOR Open - CZCSC . « « « o « = « = =
BSAM Read/Write - CZCRA «
DOMSAM - C2ZCME . . « « » o « =« =«
MSAM Read/Write - CICMF
TAM Read/Write - CZCYM«
IOREQ -~ CZCSB « « = « =« « « o o + =
SAM Posting & Error Retry - CZCRP
DA Error Retry - CZCRH . . « « « ¢ « <
MSAM Posting - CZCMG . . o « « « « =« =
TAM Posting - CZCZA . . . - « =« « « =+ =
IOREQ Posting — C2CSE . . « « = « « « =« =
BSAM Check = CIZCRC .« =« « o « o s & « o
Close Common — CZCLB . - « o « « « «
SAM Close — CZCHC . o« o « o o » o « s =
MSAM Finish - CZCMH . . . « « « « =« =&
MSAM Close - CZCMI . . ¢ « « o« o s = =
TANM Close — CZCYG « « o = o o o =« « o o =+ =
IOR Close - CZCSD . . « « =« = - .
Tape Volume Label Processor - CZCWX . o s
Tape Data Set Label Processing - CZCWY . .
Direct Access lnput Label Processor - CZCXN .
Direct Access Output Label Processor - CZCXU
Force EOV = CZCLD . « +« &+ o o o s « =+ o o
Mainline EOV — CZCXE . . + « & o « « =
Tape Input EOV Processor - CZCXT <« « « + = -«
Tape Output BOV - CZCX0 . <« « o « « = o =« o =
DA Input EOV Processor - CZCXI ¢ &+ o o o « =
DA Output EOV Processor - CZCXD . . . - . - -
Concatenation Processor - CZCXX . . « « « . =
Note - CZCRN . 4« « « o o o s o 2 s = @
Point - CZCRM . . .+ « ¢ « o « = o 2 o =
Backspace - CICRG . « « « « =« « =+ <« = « o -
Tape Control - CZCRB . « . « « « =« « = =«
ASCII Translation & Conversion - CZICWA . . .
GETPOOL ~ CZCMB « « « « o &+ « o = o « o o =« =
GETBUF - CZICMA . . ¢ « « o o & & =« o =
FREEBUF - CZCNA . « « « . « o o = o o o = =«
FREEPOOL - CZCNB . . - e e e e e e e e e e
Tape Positioning - CZCWE . . - o « < « « =« =«
Volume Sequence Convert - CZCWV
Message Writer - CZCWM . . « ¢ « -« + =« <«
FINDR — C2ZCRQ « « « o o o« o o s s s » = & =
RELFULL - CZCRR <« <« « & s o a = = = = o = o
FULREL - CZCRS . =« & « & o o o o &« « o =
MOVEPAGE = CZCOC . ¢ o o o o s » o o « o =+ =
VMIER - CZCEI . <« « ¢ + o« a o & s o « s o o =
VDMEP - CZCQK +. « <« « o o o o « o = = o & = =«
Search SDST = CZCQE . . « &« « « o o =« =« o o =
Insert/Delete Page - CZCOD . « « « « « =« =+ =«
INSERT - CZCOF . - e« e s s e & e e e e e a
ExpandRLSTBL—CZCQI............

CHARTS

. .200
. 202
. .206
. .208
. .210
. .211
. 212
. .213
. .214
. .216
. .221
. .222
. 223
. .227
. 237
. .2U43
. .2b4
. .245
. .257
. .264
. <275
. .277
. .278
« .281
. .282
. .284
. .289
. .291
. .293
. 294
. .298
. 307
. .308
. 309
. .310
. «311
. 312
. 313
. .314
. .316
. .317
. .318
. .31°%
. .320
. .321
. 324
. <325
. .326
. 2327
. -328
. 331
. 2332
. «.333
. .33
. .335
. 336
. .340
. 343
. .3u8
. .351
. 352
. -353

Chart KD. Request Page = CZCOE . . . ¢ 4 + « « o o o o o =« o« « « . 354
Chart KE. Reclaim = CZCOG + . & & &« v ¢ 4 o o o o o o o o o« o o o « 2355
Chart KF. DELVAM - CZCFT e e 5 e o s e e + e e s e s s s = s« o = « +356
Chart LA. Interlock - CZCOH . 359
Chart LB. Release InterloCk - CZCOI .+ . & v v v & 2 w o o = « « « - .360
Chart MA. OPENVAM = CZCOA . . ¢ + v v & 4 o o o o o o o o = = o « <« 2361
Chart MB. DUPOPEN - CZCEY . . +v &t ¢ 4o 4 v % o o 4 o 4« o o o o = v 4« J386
Chart MC. VSAM Open - CZCOP .+ . . & & 4 4 2 o o 4 o o o « « « » o« « 2367
Chart MD. VISAM Open - CZICPZ s s s s e w % e e s s s s = = = +« « . 368
Chart Mi. CLOSEVAM - CZ(OB e & e s e 2 a2 e+ e e s s o s e« &« « s o« « 369
Chart MF. DUPCLOSE -~ CZICEZ « e 4 a2 8 e e s e e s 8 a o s 8 e« ¢ o o« 374
Chart MG. VSAM Close = CZCOQ v « & « 4 4 o o o o o o o o« 2 o o o« « 2375
Chart MH. VISAM Close = CZCQA +. « + 4« o 2 « 2 o « s s o o « o « « « 2376
Chart MI. VAM ABEND Interlock Release — CZCOQ + « o « o o o« o« « o » 2377
Chart NA. VSAM GET - CZCOR e e 3 a4 e e« 2 % s o a o a s w« s « o o o 2379
Chart NB3. VSAM PUT - CZC0S « 4 4 s s a4 s 4 e« e &« s a2 e « = s s = « =381
Chart NC. VSAM Set Location = CLZCOT &+ v 4 4 v o o o o o « o «w o = « <383
Chart NL. VSAM PUT Exchange - CECOU ¢« . « « « « . . .385
Chart NE. Flush Buffer - CZCOV . . . ¢ ¢ & o 4 o 2 o o « » « o« o « 2386
Chart OA. VISAM PUT = CICPA . &+ ¢ « 4 o &« « o o o o o o s o o o« o » 2387
Chart OB. VISAM GET ~ CZCPB + 4+ « o o o o 5 2 o o o o o « o =« o« o « <390
Chart OC. VISAM Set LoCation = CZCPC . & & =« o v o o o o o o o« « « 2392
Chart OD. Read/Writeé = CICPE . & & o « o s 2 o o o o o o o« « « o « 2394
Chart OE. GETPAGE = CZCPI . =« & 4 « o o 2 o o o« o o o o s o s o o« » 2396
Chart OF. AdQ Directory Entry = C2CPL . « « + « 4 + « « « =« = « « o 398
Chart PA. Find -~ CZCOJ s e s w e s e s = = w s s s s 2 s « o o o o 800
Chart PBR. STOW - CZCOK s« 4 e s a e & = s s = & s & e s s » s« 2 » 804
Chart PC. Search = CZCOL . & v 4 4 & ¢« 4 o v o o = s o = w o v « « 812
Chart PD. Extend POD ~ CZCOM . . ¢ ¢ + « o « o o s o o o o o » « « 1413
Chart PE. Relocate Members — CZCON ¢ & ¢ o o o o« o« « =« o = 2418
Chart PF. GETNUMBR ~ CZCOO . ¢ 2 & 4 o o 2 « o « a « o « s s « « « 2415
Chart QA. QSAM = CZCSA . ¢ v 4 o a o « = s« a o o« o o s o o « = « « 2417
Chart RA. Terminal Task Control = CZCTC « « « v &« o o « ¢« « o« « « « 433

.
.
.
.
.
3
.
.
.
.
B
.
0
.
.
.
®
.
.

PART I

ACCESS METHOD FOR BSAM, MSAM, TAM AND IOREQ

'he data management access merhods for
18k Time Sharing Systew/360 (TSS/360)
inciude the routines, control blocks, and
wWork areas that receive or transmit data
from or to I/0 devices. Part I describes
data management access methods:

1. Basic Sequential Access Method {(BSAM)

2. Multiple Sequential Access Method
(MSAM)

3. Resident Terminal Access Method (RTAM)
- Overview only

4. Terminal Access Method (TAM)
5. 1/0 Request (IOREQ)

The routines in eacn of the access
methods, although similar in operation,
differ in these ways:

* BSAM routines enable the user to access
data at the READ/WRITE macro instruc-
tion level. BSAM processes sequential
data sets that reside on magnetic-tape
or direct access devices. BSAM data
Sets are compatible (except for the two
limitations indicated in the BSAM over-
view) whether created under IBM System/
360 Operating System, referred to as
Operating Systems/360 (05/360), or under
TSS/360. Both data sets can pe pPro-
cessed by 0S/360 BSAM and TSS/360 BSAM.

* MSAM routines allow tne user to process
logical reccrds at the GET/PUT macro
instruction level for the 2540 card
reader/punch and 1403 printer. MSAM
aiffers from BSAM in that the channel
command words (CCWs) used to perform
the I/0 operations on the above men-
tioned devices are command chained,
significantly reducing the interruption
processing overhead. MSAM can be emp-
loyed by any user; however, device
management restricts the use of unit
record equipment to privileged users.

* RTAM routines, as the name suggests,
are located mainly in the resident
supervisor. For the logic flow and
detailed descriptions of the major por-
tion of RTAM, see the System Logic Sum-
wary PLM, GC28-2009 and the Resident
Supervisor PLM, GY28-2012. This publi-
cation describes Terminal Task Control,
the virtual storage routine, analogous
to other access methods routines, which
initiates multi-terminal tasks (MTT)
and sets up read, write, and polling

SECTION 1: INTRODUCTION

control blocks for READQ, WRITE,,
FINDQ, FREEQ, and CLEARQ macros issued
by the MTT user.

* TAM routines restrict nonprivileged
user programs to accessing data using
the GATE macro instructions, and allow
privileged programs to access data at
the READ/WRITE macro instruction level.
TAM processes sequential data sets that
reside on specified communication
terminals.

e IOREQ routines permit the user to
access data, from any device, at the
channel command word (CCW) level. The
user must, however, be privileged to
have access to these IOREQ routines for
unit record equipment.

This section provides an introduction to
the access methods, the user's I/0 macro
instructions, the common control blocks,
and contains an overview of BSAM, MSAM,
TAM, ana IOREQ. Sections 2, 3, 4, and 5
discuss details of the access methou rou-
tines' Open, Read/Write, Posting and Close
phases. Section 6 discusses routines pri-
marily designed for use with BSAM.

linkage to the Access Methods zoutines

Problem programs, as well as IBM-writtem
system programs, may, directly or indirect-
ly, use the four access methods (BSAM,
MSAM, TAM, and IOREQ), therefore privileged
ana nonprivileged programs may link to
these access methods. The access routines
are called upon by I/0 macro instructions
that are in source programs. During lan-
gquage processing, the I/0 macro instruc-
tions are expanded into code that links to
ana passes parameters to appropriate access
method routines. The DCB, DFTRMENT, and
JCBD macro instructions do not link to
access methods routines but complete their
function during assembly. Expansion of the
DCB ana DFTRMENT macro instructions only
puiid control block tables. The DCBD macro
instruction inserts a dummy control section
at the place the macro instruction is
encountered.

Privileged programs use Type-1 linkages
to the privileged access method routines;
nonprivileged programs use the ENTER
mechanism. See IBM System/360 Time Sharing
System: Task Monitor Program Logic Manual,
GY-28-2041, for an explanation of ENTER.

Section 1: Introduction 3

User's I/O
Macro Instructions
Open Reod/Write Close
pe and/or Get/Put
Doto
Monagement @ @ @
Open Read ‘Write Close
Routines Routines Routines
[) '
Task . .
Monagement @ Tosk Monitor and Supervisor
Data Posting
Manogement L Routines
- ®
{ @ 4 Interrupt
Signal
/O Stotus IORCB
‘
Dota Event
Control Biock
Channel

Note: Numbered boxes refer to the accomponying description under Access Method Phoses .

Figure 1.

access bethod Phases

Each of the BSAM, MSAl, TaM or IOREQ
access methods may be presented in four
phases, illustrated in Figure 1.

Here are some preliminary notes on each
of the four phases. The numpers in paren-
theses correspond to those circled in
Figure 1.

Cpen_ Phase: Details are presented in Sec-
tion 2 of this ocart.

(1) If a user desires transmission of
data to or from an I/0 device, he must ini-
tially use the OPEN macro instruction in
nis program.

(2) The OPEN macro instruction calls the
open routines that prepare the I/0 devices,
control blocks, and the data set for furth-
€r processing.

head/Write Phase:
Section 3.

Details are presented in

(3) After completion cf the OPEN rou-
tines, data may be transmitted by using the
READ/WRITc macro instructions.

4 Part I: Access Method for BSAN,

rccess Method Phases for BSAM, MSAM, TAM, and IOREQ

(4) These call the READ/WRITE routines
that build CCWs in the IORCB.

(5) Tne resident supervisor is requested
to execute the channel commands via an IOC-
Al. SVC.

Note: The reaas/write phase is initiated by
READ/WRITE or GET/PUT level macro instruc-
tions where the specific access method
READ/WRITE or GET/PUT level macro instruc-
tions are listed in Table 1. READ or GET
macro instructions read data from an I1I/0
jevice. WRITE or PUT macro instructions
cither write data to an I/0O device or send
control information to the control unit.

Posting Phase:
Section 4.

Details are presented in

(6) After an I/0 operation has been com-
pleted, an I/0 interruption occurs which
results in the storage of,K I/0 status infor-
mation and the IORCB at fixed locations in
the interruption storage area (ISA).

{(7) The posting routines obtain control,
via the task monitor, after the resident
supervisor receives the interruption, with
all other task interruptions masked off.

MSAM, TAM and IOREQ

Table 1. BSAM, MSAM, TAM and IOREQ
READ/WRITE and GET/PUT Level

Macro Instructions

T A
READ Macro |WRITE Macro|
|Instruction |Instruction|
4 i

L

¥

|

| Access Method
i

1

, +- } 1
| BSAM | READ | WRITE |
| | | I
| MSAM | GET |pUT |
| |] i
|TAM | READ | WRITE]
| (privileged) i | {
| | | i
| TAM | GATRD | GATWR |
| (nomprivileged)| | |
| ! i
| IOREQ |VCCW, IOREQ |VCCW, IOREQ|
e A ¥ J

(8) These posting routines record whetn-
er the 1/0 operation had a normal or
abnormal completion.

{9) The posting routines post the
results in a DER and a DECB.

Note: FError retry and recovery is
attempted by the system, if the 1,0 comple-
tion was abnormal. (IOREQ POSTING does not
have error retry or recovery routines.)

The posting routines return control to the
task monitor which returns control to the
interrupted program by loading the o1d 1/0
VPSW. Consequently, the posting processing
is transparent to data management routines
except for the altered DEB and DECB. The
CHECK macro instruction in the user's pro-
gram waits for and checks completion of the
1/0 operation that is posted in the DECB.
(MSAM does not have a CHECK macro instruc-
tion. DOMSAM performs the functions of the
CHECK macro for MSAM. GET/PUT provides
return codes which indicate the completion
status of the requested operation.)

Close Phase: Details are presented in Sec~

tion 5.

(10) when the user has completed proces-
sing his data set he issues a CLOSE macro
instruction.

Rote: When the MSAM user has completed
processing his data group he may issue a
FINISH macro instruction prior to the CLOSE
macro instruction to empty or truncate the
last buffer and test the result of all out-
standing I/0. This is preferable to simply
issuing CLOSE since the task is permitted
to continue as the I/0 operation queue.

(11) CLOSE calls the close routines
which will reset/release control blocks and
complete data set processing.

Macro Instructions

To communicate with the access methods,
specific 1/0 macro instructions in the
user's program are required for BSAM, MSAM,
TAM and IOREQ (see Table 2).

All I/0 macro instructions avaijable for
each of the access methods are in Table 3.
For more details, see Assembler User Macro
Instructions.

Control Blocks

The list below indicates the control
blocks that are within the user's program
and access method storage; BSAM, MSAM, TAM,
and IOREQ require that all these control
blocks be generated if the access methods
are to function. Additional control blocks
are described later, under the access
methods to which they are related.

Dynamically Built or
SYSGEN Generated System
Control Blocks

Assembly Generated
Contrel Blocks

SDAT

s5pT
DCB JFCB
*DECB DEB

IORCB

*In MSAM the DECB is generated at open
time.

control blocks are generated either in
the user's program area or in the access
method area.

USER'S PROGRAM AREA: The following control
blocks are generated in the user's program
area.

Data Control Block (DCB): The DCB is
generated during assembly by a DCB macro
instruction and serves as a basic COmmuni~
cations area for I/0 operations. It is
used to maintain information such as data
Set organization, attributes of data set
buffering information (used in data set
processing), and addresses of special exit
routines.

Data Event Control Block (DECB): The DECB
is generated during assembly by a READ/
WRITE macro instruction {except for MSAM)
and serves as an I/0 status-reference block
for 1/0 operations. It is used to store
information such as: state of completion
of an I/0 operation, type of operation pre-
viously issued, CSW information, and codes
that indicate, to the user program, condi-
tions on ending the I/0 operation.

ACCESS METHOD AREA: The following tables
and control blocks are generated in the
access methods area.

Section 1: Introduction 5

Table 2. BSRM, MSAFK, ThAM, and IOREQ 170
Macro Instructions Required for

1/0 Operations

§ ¥ 1
| I/0 Macro | |
|Instruction| Explanation i
b t e
|Required prior to open phase; |
i | reserves space in user's
i {program for the data control |
{ {block (DCB), which is basic |
i |communication area for /O |
! joperations. |
{] |
i |
|

1
jrequired to start open phase,
}links to open routines to
jopen the DCB.

i

!

{
- . . 3 g
Required to initiate]
transmission of data. i

i

aApplicable only to MSAM.

|
i
i
|Required to initiate
Etransmisaion of data;
ireserves space for the data
i
i

!

i

}

i which contains status of i/0
i {operations; links to

i {read/write routines that

} {build CCWs in the IORCB, and
i {causes the commands to be

i |executed by issuing the IO0CAL
i

i

i

i

i

%

event control block (DECB),]
!

{

|

i

i

i

{svc. |

! g 1
JCHECK jRequired under nSAM, TAM, and|
i JIOREQ to test 1/0 operation |
{ jassociated with the DECB; {
i jwaits for and checks i
] jcompletion of I1/0 operations |
i |that are posted in the DECB; |
I ifor I/0 normal completion {
| {returns to problem program; i
! |for exception I/0 completion |
i jexits to the routines |
!
|
|

{specified in the DCB.

|
‘ ! !
CLOSE {Required to disconnect data |
{ |set from user's program; i
i {links to clocse routines that |
i jcowplete contrcl blocks. i
i !

jRequired if user accesses the
i {DCB fields; it provides the

| jdummy contrcl section (DSECT)
i |which contains all symbolic

! {names used to reference

i |information in a DCB.

i

§ o i i

! READ/WRITE macxo instructions.

{ READ/WRITE macro instructions at

| assembly time either generate space for
{ a DECB (5 and L form) or refer tc an

| existing DECB (E form); MSAM has no

i

READ/WRITE macro.

|

{

|

|

|

;

iapefer vo Table 1 for listing of specifici
!

{

]

|

|

|

L - 3

6 Part I:

Table 3. BSAM, MSAM, TAM, and IOREQ Macro

Instructions

| L] 2 Zukenekatnt S b ANtk —1
| Used in | i | | |
{ Common | BSAM { MSAM | TAM | IOREQ|
- 4 4 -
} DCB :READ | GET | READ® | IOREQ|
i ! | |
{ DCBD {WRITZ |PUT | WRITE* ivccw i
% | CHECK {SETUR |CHECK { CHECK |
| | |] |
{ OPEN |GETPOOL |FINISH|DFTRMENT | |

| ! { 1 |
| CLOSE |GETBUF | | i 1
| | FREEBUF | | i |
i |FREEPCOL | i i |
| |NOTE] | { {
i | POINT { ! i {
i | BSP | 1 | i
i |FEOV i l | !
| | CNTRL | | i i
{ |{CLOSE | | { !
i { (TYPE=T)| i { |
i |DQDECB | | |
- L —h —dee § G
{*In TAM, only privileged programs may i
{ issue the READ/WRITE macro instructions. |
{ Nonprivileged programs issue GATRD/GATWR]

{ macro instructions. {
[S

symbolic Device allocation Table (SDAT):
The SDAT which isS initialized by device
management resides in public virtual
storage and provides information on the
status and characteristics of each allocat-
able I/0 device in the system. The SDAT
containe information on the symbolic device
address, model code, device code, device
class and unit type.

Job File control Block (JFCB): The JFCB is
constructed for a data set by the DDEF rou-
tine from information in a PDEF command or
macro instrxuction. The information in the
JFCE is used to complete the pCcB during
execution of the OPEN macro instruction.
The JFCB contains information defining the
data set attributes, information on where
the data set is located, and pointers to
other JFCBs in the task.

Note: The data set organization must be

specified in the DDEF command for ICREQ.

pata Extent Block (DEB): The DEB is con-
structed at OPEN time for a given data set
and serves as a data set reference block
for 1/0 operations. The DEB is used to
store information such as volume locations,
device and data set attributes, pointers to
other control blocks associated with the
data set, and pointers to DECBs that have
not been checked.

Access Method for BSAM MSAM, TaM and IOREQ

170 Request Control Block (IORCB): The
10RCB is constructed at READ/WRITE time and
Serves as a control reference block for 1,0
operations. It contains the CCWs that con-
trol the 1/0 operation and may contain

either the I/0 data buffer, or a pointer to
the I/0 data buffer.

I/6 sStatistical bata Table (SDT): For each
device the SDT contains maximum retry thre-
sholds which are used in certain error
processing.

BSAM OVERVIEW
=207 YVLRVIEW

BSAM comprises those instructions, con-
trol blocks and datra areas which allow for
iimited data set interchange between TSS/
360 and 05/360. {TS5/360 BSAM will not
Support the 0S/360 direct access split
cylinder format and will not deblock reco-
rds providegd by 057360 QsSAM.)

With tape input ang output, BSAM sup-
ports either EBCDIC symbols and the stan-
dard IBM label and record formats or the
Erint symbols and label and record formats
of the American National Standard Instj-
tute. The latter Print symbols standard is
Gfficially the American National Standard
Code for Information Interchange X3.4-1968,
and is referred to herein as ASCII. The
latter label and record formats standard is
officially the American National Standard
Magnetic Tape labels for Information Inter-
change, X3.27-1969, and the format is
referred to herein as American Natiocnal
Standard. TSS/360 processing is in EBCDIC
and standard IBM format; when the user Spe-
cifies the ascII option as a parameter of
the DDEF command, BSaM provides a conver-
sion interface between ASCII and EBCDIC
symbols and American National Standard and
Standard IBM formats.

The access methods descriptions pre-
sented in this manual do not include the
DDEF command, which performs some preli-
minary open functions for BSAM. The Open
Common and Open BSAM routines oversee the
completion of the necessary open functions.

The DDEF command ceontains such informa-
tion about the data set as its name, volume
residence, organization, and type of device
ased. The DDEF command causes the building
of the job file control block (JFCB), over-
Sees initial device allocation and mounting
and allocates space for data sets on direct
dccess storage devices.

By macro instruction, the user will be
linked to the Open Common routine. This
routine performs those open functions which
are common to all the TSS/360 access
methods. These functions basically are:

®* Finding the JFCB in the system.

® Filling in the data control bleck (OCE;
with information trom the JrCR. The

user ic thus able to specify, jor g
particular run, Many data organization
and herdling options which may not be

known at assembly time,

¢ Ensuring that only privileged programs
use privileged data sets.

®* Checking for conflicts between user
indicated options and control block
data.

* Getting a page of storage to be used
later for input/output request control
blocks (IORCBs).

For Bsau, Open Common 1inks to BSAM
Open. At this point, the JFCB and DCB have
been constructed, a data extent block
(DEB), the primary control block used by
the Read/Write routines for such informa-
tion as the device type, error Statistics,
outstanding IORCBs, and the queue of
unchecked 1/0 requests, is still required.
BSAM Open®s main function is the building
of this DEB in protected storage so that it

program. To build the DEB, linkage is made
toc the Build Common DEB routine or to the
Build DA DEB routine; the choice depends on
device type.

DA Open is used to complete open proces-
sing for direct access devices while Tape
Open is used to complete the open process
for tape. Both DA Open and Tape Open calil
the appropriate label processing routines
to process user and data set labels. Label
information such as record length can be
used to modify the DCB.

The labeling routines available in BSAM
are Tape Label Processor, which has separ-
dte entry points for input header, output
header, input trailer, ang output trailer
labels, pa Input User Label Processor, and
DA Cutput User Label]l Processor.

Where ASCII-encoded tapes have been spe-
cified, the ASCII Translation and Conver-
sion routine provides ASCII-to-EBCDIC tran-
slation on tape input andg EBCDIC-to0-ASCII
translation on tape output.

Four macro instructions are provided to
Obtain buffer space: GETPOOL, GETBUFF,
FREEPOOL, and FREEBUFF,

After his data sets have been opened,
the user will normally access data by means
of a READ or WRITE macro instruction, foi-
lowed (not necessarily immediately) by a
CHECK instruction to ensure complete and
correct I/0 termination. The actual ter-

Section 1: Introduction 7

mination of the 1/0 operation will cause an
interruption, at which point the Supervisor
will link to the SAM posting and Error
retry (SPER) routine whicn runs with all
interruptions disabled. Here the /70 com-
pletion code is posted into the DECB. This
rout ine also performs various post-1/0
functions, such as adjusting magnetic tape
block counts. In addition, the error retry
routines are incorporated into the SPER
routine. The CHECK macro instruction,
issued by the usexr at some point after his
READ or WRITE, will test the indicators set
by SPER.

If the DECB indicated unit exception,
tnhe Check routine invokes Mainline BOV,
which in turn uses Tape input EOV, Tape
output EGV, pA Input EOV, of DA Qutput ECV
to complete EOV processing for tape or DA
devices. When end of volume is in fact an
end of data set condition, processing will
involve setting an end of data set indica-
tion in the DCB. At this point Check is
gsed to set up linkage to the user‘'s end of
data set routines if specified.

For DA output devices at EOV but not end
of data set, the extend routine 1is called
to try to get more space ©On the current
volume. If and when another DA output
volume is necessary, Bump is called to
mount /dismount the next volume and, 1in
turn, Extend 18 used again o obtain space
on that volume.

The Concatenation routine is uwsed to
iink roncatenated data Sers.

EOV processing is transparent toO the
user: when end of volume but not end of
data set occuxrs oOn inpat, cutstanding reads
will be automatically reissued by the Check
routine upon return from EQOV.

The end of data set indicator is reco-
gnized in the Check routine, and linkage iS
made to the aser's end of data set routine,
if specified.

In addition to Check, severai other con-
trol routines are available and ased in
BSAM: Note, Point, Backspace, control,
Force End of Volume.

and

To close his files, the user employs the
CLOSE macro imstruction which will link toO
ciose common. This routine resets fields
i the DCg filled in by the access methods.
For nonshared data sets, it does the neces-
sary recataloging for volume extents.

close Common will iink to SAM Close.
EOV is called to complete closing output
tape or DA data sets. The Tape Output EOV
routine will in turn utilize the label
handling routines after it waits for out-
standing 170 to quiesce. The SAM Close

8 Part I:

routine will release unused storage unless
the user directs otherwise.

Another basic BSAM module 1s the Message
Wwriter, which 15 called by the Open, Close
and EOV routines tO handle most messages
and console communication, and do most
ABEND processing.

jee Section & of thiz PLM for routines
specifically designed for BSAM.

SAM_Communication B The SAM communi-
ation block ic a table area used heavily
ny SAM Open, Close and EOV routines for
rassing parameters. See Sﬂg@___@_gg_&;_g_ol

iBlocks PLM for a detailed description of

on Block:

MSAM OVERVIEW

pata sets, Buffers, and Blocking Factors

The Multiple Sequential Access Method
(MSAM) provides a fast and efficient
mechanism for simultaneously driving sever=
al card readers, card punchesS, and printers
under the control of a single usex's task.
geveral data sets may be grouped together
on any one device, allowing the user to
process all of them under the same Data
Control Block without opening and closing
the DCB each time a data set with different
characteristics is to bhe processed. rach
of the separate data sets is referred to as
a data group-. Input data groups may be
separated by control cards which consist of
invalid EBCDIC characters in the first four
columns and as many valid EBCDIC characters
as required for control purposes. MSAHM
will recognize these control cards and
notify the user that a control card has
peen read, allowing him to take wnhatever
action is necessary. putput data groups on
the card punch may be separated with
cial cards from the reader by specifying
the COMBIN option in the DCB macro insityuc-
tion, or they may be removed from the read-
er by the operator, who may be instructed
t+o do so when a FINISH macro instruction is
issued.

SEE -

S

MsAM differs from other sequential
access methods in that each MSAM 1/0 requ-
est of the system processes a buffer group
of logical records, while each request
ijssued by the other sequential access
methods proresses only a single physical
record. Physical records are buffered by
pages of virtual storage. MSAM processes &
number of buffer pages based on an
installation—provided parameter which ic
set in the symbolic device allocation table
(SDAT), and which may vary for each device.
Its value may be adjusted to provide opti-
mum device utilization when the number of
records wbich can be contained on N pages

Access Methed for BSAM, MSAM, TAM and IOREQ

will drive the device full speed for the
maximum length of time between the two con-
Secutive time slices.

The first 32 bytes of each buffer page
are reserved for control information used
by MSAM. The remaining portion of the page
is packed with format-p or format-vV logical
records. Format-F logical records are
packed in the buffer starting with the 33rs
byte in the buffer. Format-v logical reco-
rds are packed in the buffer starting with
the 37th byte in the buffer, since four
bytes must be reserved as control bytes
(LLBB), as is the case with blocked,
variable-length records.

The number of recoras per buffer page is
restricted to a maximum of 100 on input and
200 on output. Depending on the size of
the records, there may be fewer.

The size of an input buffer will be com-
puted by adding to the 132 control bytes the
smaller product cf {(a) 100 times the logic-
al record length, or (b) multiplying by the
logical record iength the integral part of
the result of dividing 4064 by the logical
record length.

The size of an output buffer will be
regulated by the following rules.

1. For fixed-length records, the number
of bytes used for data will be the
lower of (a) 200 times the logical
record length, or (b) the product of
multiplying by the logical record
length the integral part of the result
of dividing 4064 by the logical recora
length.

2. For variable-length records, the last
record will have been placed in the
buffer when (a) the record count
reaches 200, or (b) the sum of the
user-provided control bytes (LL) of
each record in the buffer plus the
next expected logical recorad length
plus four is greater than 4064,

3. The buffer will be ended when form
type-F is mounted on a printer, and a
FORTRAN? control character is found
indicating a skip to channel 1.

Schematic Description

The user's problem program initializes
for an MSAM I1/0 operation by defining a
data control block with the DCB macro

iControl characters defined by American

- National Standard FORTRAN, ANSI X3.9 -
1966, hereinafter referred to as FORTRAN
control characters {previously known as
ASA or USASI control characters).

instruction, which generates a common po-
tion and an MSAM portion of the DCB. The

user then issues an OPEN MACro instraction
which 1lirks to the Open Common routine.

Open Common completes the common portion
of the DCB from the TDT JFCB, and then
invokes MSAM Open to build a DEB ana pro-
vide N buffer pages (where N is a constant
in the SDAT set at System generation time).
MSAM Open also provides N half-pages for
IORCBs and a DBP page, which is used as a
work area by MSAM Read/Write and DOMSAM. a
DEB work page is also obtained to use as a
Save area for DOMSAM and to hold the N+1
DECBs. MSAM Open formats N IORCBs and N
DECBs, and it checks the SDAT and tne DCR
for agreement and for valid options.

To set up online output devices, the
user may issue a SETUR macro instruction.
In the case of a print file, the SETUR ron-
tine may read the two system VIP data sets,
SYSURS and SYSUCS, to cobtain the parameters
necessary for setting up the printer.

SETUR will issue WIO macro instructions and
possibly IOCAL SVCs to the 170 supervisor
to achieve the desired setup of the device.

The user issues a GET macro instruction
to obtain each card reag from the card
reader. Each GET macro instruction invokes
the DOMSAM routine via type-1 linkage. If
there are any records already in the buff-
er, DOMSAM passes the next sequential reco-
rd to the user. If the buffer is empty, or
if all the records in the buffer have
already been processed, DOMSAM invokes MSAM
Read/Write.

The user issues a PUT macro instruction
to print each line on the on-line printer
Or punch each card on the on-line punch.
Each PUT will cause a record to be placed
in a succeeding location of a buffer page.
DOMSAM keeps account of these records to
determine when the last record has been
placed in the buffer. at that time, it
invokes MSAM Read/Write.

The MSAM Read/Write routine builds an
IORCB and invokes the I/0 sSupervisor (I0S)
via an IOCAL SVC. Each IORCB contains a
list of CCWs for each record to be read or
written. Each record read has a read ccw
and a distinct feed, stacker select CCwW
associated with it. Each record written
has essentially one CCw associated with it,
for example, a punch, feed, select stacker
CCW, or a print and space CCW. Additional
control CCWs may be generated by MSAM at
the beginning of the CCW list, such as skip
to channel 1 on the printer. The IORCBs
specify command and IORCH chaining and pro-
vide the address of the MSAM Posting
routine.

Section 1: Intreduction 9

When the CCWs in an IORCB complete their
execution, the currently running task pro-
gram 1is interrupted, and MSAM Posting 1S
given control from task monitor SO that the
necessary information may be stored in the
DEE and in the DECB to inform DOMSAFN of the
1/0 pProgress. 1f an 170 error has
occurred, Posting will attempt the eXror
retry procedures.

1f intervention 1is required by the
operator, posting will record, in the DEB
page, information about the IORCB returned
py 10S in the isa, and specify to the task
monitor an asynchronous interruption rou-
tine to be given control when the device is
transferred from the not-ready state to the
ready state. A WTO macro instruction is
issued indicating the required action, and
control is returned to the task monitor,
which retuarns control to the routine which
was interrupted for the posting operation.
The asynchronous routine is part of the
MSAM Posting routine, but it has a separate
entry point. When given control, it will
reissue, from the point of failure, the
¢CWs in the IORCB which was posted by MSAM
Posting.

By testing the return code from his GET
or PUT macro jnstruction, the user can
determine whether or not his operation has
heen completed. pefore reissuing his
incomplete GET or pUT, he is free to do
other processing. prior to reissuing a GET
which returned an incomplete, the user
should test the DECE pointed to by DCBCDE
for completion: prior to reissuing a PUT
which provides an incomplete return the
user should test the DECE pointed to by
DCBTDE for completion. If these DECBs are
not complete and no further processing can
pe performed, the user may execute the
AWRIT SVYC in the DECB pointed to by DCBCDE
or DCBTDE.-

when the processing for the current data
group is completed, the user may issue the
FINISH macro instruction, which will invoke
+he MSAM Finish routine. On output, this
routine will initiate type-1 linkage to
DOMSAM, which may in turn invoke MSAM Read/
Write for writing the last buffer on an
output data gToup:. and it will test the
results of the write. It will wait for
completion of all outstanding 1/0 requests
for an input data group- Then it will
notify the operator +o remove the input Or
cutput data group from the device by a WTO,
unless the usex has indicated that such
messages are to be suppressed.

1f the operator has peen requested to
respond to the message by readying the
device, the Finish routine notifies the
task monitor to recognize an interruption
when the affected device is changed from
the not-ready to ready state. This inter-

10 Part I:

ruption will give control to the Finish
routine at its second entry point. The
next time the Finish macro instruction 1is
issued after this interruption is received,
a return code other than incomplete 1S
returned by the Finish routine to the user.

When no more data groups are to be pro-
cessed by the task on the device at the
present time, the CLOSE macro instruction
is issued. The Cclose Common routine is
invoked and clears all fields of tne DC3
completed by Open common . It then invokes
MSAM Close, which issues a FINISH macro
jinstruction, waits for completion, and
releases the storage areas obtained by MSAM
Open-.

MSAM Glossary

Tables 4, 5, 6. and 7 contain fields
and/or flags used by MSAM which are fre-
quently ment ioned in the sections of this
publication devoted to MSAM.

RTAM OVERVIEW

Activation of a terminal will cause an
asynchronous interruption to pe generated.
The interruption will be fielded by the 1/0
Interruption stacker routine in the resi-
dent supervisor and placed on the channel
interruption processor queue- The Channel
Interruption Processor determines that this
js a terminal I/0 interruption and passes
it to the Terminal communications Subpro-

cessor, which is also resident.

This terminal control is all raking
place in the resident supervisor, as the
RTAM abbreviation suggests. For details of
an overview of the RTAM access method, 32¢
the Resident Su rvisor PLM, GY28-2012 or
the System ngiq_jggggggnggg, GC28-2009.

The Terminal rask control routine, which
describes internals for some of the MIT
user commands and macros,
this PLM.

is described in

TAM OVERVIEW

privileged programs are the only ones
that may issue READ/WRITE macro instruc-
tions to directly call TAM Read/Write.
Nonprivileged programs may only use the
GATE I/0 macro instructions that call an
intermediate system's GATE routine that in
turn calls TAM routines. The command SYS-
tem also invokes those GATE routines that
1ink to TAM. All programs that use TAM
routines either by a direct call or by the
intermediate system's GATE routine are
restricted in that they may only be used
with specific communication terminals.

Access Method for BSAM, MSAM, TAM and IOREQ

DCB Table Fields and Flags (MSAM
Section)

{
| |
CRCBCOMEBE] | DCBCMB|Combine a reader on same 2540 as punch

| i |
 BCBICE |

|data group

! {Address of ICB named in SIR (¢ = none)
%DCBL&MAX{ :Maximum allowable logical record length
;DCBLRC : :Addzess of current logical record in

i | {buffer for input records, or next

| | |available buffer lccation for output

i | | records

§DCBEAP { gAddress ~f end of current bufier

i

%DCBPPT % {Address of current buffer page

EUCBRCA g {Internal return code

§DCBCN, % jLogical record count

;DCBCDE 1 iAddress of current DECB

tDCBFDE ? 1Address of first DECB in list

ZDCBLDE : lAddress of last DECB in list

ED(BTDE § ghddtess of DECB to be tested for

i | {completion on a PUT

iDCBUDE : ;Address of user's copy of erring DECB
%DCBFRMTP: :SYSURS form type for printing
;DCBSTRIK: :UCS strike out code

i

| |
DCBMSF1 |DCBECOP|End-of-buffer processing needed

| |
(MSAM | DCBIOC|Read/Write already invoked
flags) | {

|
| DCBENT | Buffer priming to be performed
| |
| DCBOVF | Format ¥ new print page
| |
|DCBELP{Last PUT issued was in locate mode

[|
| DCBNLP|Previcus locate mode PUT being .

i
b
!
I
|
b
i
i
§
i
H
|
t | | processed
H

| !
i DCBMSF2 | DCBPUR|Purge ail 1/0 at CLOSE

| I
| DCBSUR| SETUR in process

| (MSAM

{ flags) |

! | |

i {DCBFIN|FINISH just issued

i | |

H {DCBFIP{FINISH 1n progress

i | | i
§ |DCBFT {First GET or PUT on a data group

[[S, U VY —
Table 5. Some DBP Table Fields

Meaning

T
|
+ ———
DBPPRTRY | Printer retry counter
|
{ Printer data check counter
|
| SYSUrS form type code
I
| SYSURS UCS folding code
|
|

SYSURS UCS strike out code
b e P _

Table 6. Some DECB Table Fields (CHADEC)
_____________________________________ .
| Field | Flag | Meaning |
pmmmm e === oo o i
| DECECB | DECECU | Read/Write request :
| (completion | code i
| code) | | |
| | | {
| |DECEC1|Normal Completion i
l | {
| | DECEC2|Complete with error |
| | |]
i |DECEC3|Intercepted |
| | | |
| |DECECU |Wait]
| | | i
| DECLEN | |Data area length i
| I I |
| DECCSW | |Channel status word |
S . R, 3
Table 7. Some DEB Table Fields
rom T B e S i 2]
1 Fielas | Flag | Meaning i
. S T ——-—1
|DEBIOC | {Number of outstandingj|
| | | IORCBs i
| | ! i
| DEBNF |DEBNF1 jUnrecoverable 1/0 {
| | |error {
	DEBNF2	Permanent I/0 error
I		
DEBCLS		Storage protection
i i {class of DCB {
Lo e 5 e 3

During execution the OPEN macro instruc-
tion provides linkage to the Open Common
routine. Open Common locates the corres-
ponding JFCB for the data set. Open Common
links to TAM Open to continue special open
functions, and then TAM Open returns to
Open Common which sets bits in the DCB and
the JFCB tc say that the DCB is open. A
counter in the JFCB is updated to indicats
the number of DCBs that are open.

puring TAM Open, one page of storage is
allocated and pointers are set up between
this page and other control blocks. Part
of this page is reserved for the DEB, which
is partially completed during TAM Open with
terminal information that was stored in the
the symbolic device allocation table
(SDAT). The remainder of this page is
reserved for the terminal operational sta-
tus table (T0S) which includes the IORCB.
The TOS is used as a work area during TAM
Read/Write in order to complete the IORCE.
Since the SDAT contains current information
about the terminals, TAM Open increments
the SDAT DCB open count for this terminal
by one.

Section 1: Introduction 11

To accomplish a read/write function, the
corresponding TAM GATRD/GATWR macro
instruction is required in the nonprivi-
leged program while READ/WRITE macro
instructions may be used in a privileged
program. During assembly this generates a
DECB that will be used to store the 1/0
status of this operation. During execution
from the terminal information (terminal
type and model code stored in the DEB dur-
ing TAM Cpen), and from the type op:tion
{stored in the DECB), TAM Read/Write begins
a table search. This search is through
three internal tables ({(unit type, terminal
library, and terminal control program) to
locate a prestored channel progranm genera-
tor (CPG) for the terminal. This CPG is
made up of channel command word generators
(CCWGs) that use the work axea in the TOS
to build channel command words (CCWs) and
then move them into the IORCB. The 1/0
buffer area is also completed in the IORCB.
The CCW list is executed by issuing an
IOCAL S¥C. This passes the IORCB to the
1/0 supexrvisor to execute the CCWs. At the
completion of the I/0 operation an inter-
ruption occurs. The IORCB and the complete
170 status information are stored in the
interruption storage area {ISA located at a
fixed location of segment O, page 0).

TAM Posting processes this I/0 interrup-
tion by decoding the interruption data.
The CCW list that was executed during TAM
Read/Write is traced through again to loc-
ate read CCWs. The Data In processor
assures that the user read area is avail-
able and translates and moves the data to
this area. TAM Posting does not issue an
ABEND upon noting exception or error condi-
tions, but only posts this exception infor-
mation in the DECB. It is the user's
responsibility to verify correct operations
with a CHECK macro instruction so the
user's program may continue. However, if
error conditions occuzxr, the user‘s SYNAD
routine may be entered where the address of
this rowtine is pointed to by the DCB.

When the user®s 170 operations with the
terminal are completed and a close is
issued, the CLOSE macro instruction links
to the Close Common rouwtine. Close Common
closes the DCB by restoring it to the ori-
ginal status. Close Common then links to
TAM Close to continue the special close
functions and then TAM Close returns to
Close Common to reset bits in the DCB and
the JFCB to indicate a closed DCB.

TAM Close frees the storage page allo-
cated during TAM Open and resets the
required pointers.

The SDAT DCB open ccunt for this termin-
al is decremented by 1. For LOGOFF at all
terminals, the disable/enable logoff func-
tion imbedded in CLOSE is also required. A

12 Part I: Access Method for BSAM,

recursive call flag prevents a recursive
loop between TAM Close and ABEND.

IOREQ OVERVIEW

Privileged programs are the only ones
that may use the IOREQ rcoutines for unit
record equipment or using SDAT. The IOREQ
programs access data from any private 1/0
device. The data is accessed at the chan-
nel command word level. A data set organi-
zation of RX (IOREQ facility being used)
must be specified in the DDEF command.

When OPEN is issued, the Open Common
routine opens the DCB and locates the
corresponding JFCB for the data set. Opeén
Common links to IOR Open to continue spe-
cial open functions and then IOR QOpen
returns to Open Common which sets bits in
the DCB and the JFCB to indicate the DCB is
open.

During this IOR OPEN, tests are made to
verify that: (1) the user’'s privilege
class is E for unit record equipment, (2}
IOREQ is specified in the DDEF command, {3}
IOREQ is allowed on the device, and (4)
this device is a private volume. Storage
is allocated for the DEB and the IORCB con-
trol blocks with data type code information
moved from the JFCB to the DEB. A final
check assures that the user is privileged,
if access to the volume is privileged.

To accomplish a read/write, the IORED
macro instruction is reguired in the user's
program. This generates, during assembly,
a DECB table that will be used to store ths
170 status of this operation. The I/0
operation is specified by VYCCW macro
instructions specified in the user’s pro-
gram. These VCCW macro instructions are
used by IOREQ to generate a list of CCWs to
control the 1/0 activity. I1IOREQ places
this list of CCWs in the IORCB. If buffer-
ing is requested by the user, space is
allocated in the IORCB for the buffer area.
If buffering is not requested by the user,
space is allocated in the IORCE for pag
list entries to connect tne CCWs to the
areas. The CCWs are executed by issuing
IOCAL $SVC. This passes the IORCE to the
I/0 supervisor (I0S) to execute the CCWs.
At the completion of the IOREQ I/0 opera-
tion an interruption occurs, and the ICRCB
and the complete I/0 status information are
stored in the interruption storace area
{ISA, located at a fixed location of seg-~
ment 0, page 0}.

IOREQ Posting processes this 1I/C inter-
ruption by analyzing the interruption data
with all other task interruptions masked
off. It then posts the normal or abnormal
completion code in the DECBE allowing the
Check routine to later take action based cn

MSAM, TAM and IOQREQ

these codes. IOREQ Posting does not con-
tain any error recovery routines. The
CHECK macro instruction must be used to
ensure the completion of the I/0O operation
and to detect errors or exception condi-
tions. 1If the I/0 operation is successful,
the program resumes execution at the
instruction after the CHECK macro instruc-
tion. If the I/0O operation results in an
unusual condition, the check of the DECB
associated with this IOREQ causes contrcl
to be given to the user's SYNAD routine
specified in his DCB. If multiple IOREQs
are issued before a check of the first
IOREQ is made, and one of these IOREQs
generates an error, the subsequent IOREQs
will be intercepted by IOS. It is the
user's responsibility to reissue any IOREQ
following the error-causing IOREQ.

The CHECK macro instructions must also
be issued in the same order in which the
associated IOREQ macro instructions were
issued.

When the user's 1/0 operations with the
device are completed, the CLOSE macro
instruct:ion links to the Close Common rou-
tine. Close Common then links to IOR Close
to continue the special close function, and
then IOR Close returns to Close Common to
reset bits in the DCB and the JFCB to ind-
icate a closed DCB.

This IOR Close waits until all outstand-
ing DECBs have been completed and then
frees the storage allocated during IOR
Open.

Section 1: Introduction 13

SECTION 2: OPEN PROCESSING

COMMON PROCESSING

The fecllowing routine is common to all
access methods OPEN processing.

Open Common Routine (CZCLAY

The Open Common routine, called by the
CGPEN macro instruction, performs those open
functions common to all access methods:

s It checks for DCB error conditions, and
ABENDs 1f any exist.

s It uses the GETMAIN macro instruction
to acguire a one-page work area, and
passes the addrxess of the work area as
part of a parameter 1list when it l1inks
to the access-dependent Open routines.

1t places the open options in the DCB
for reference by the access-dependent
open routines.

« If npecessary, it issuss a call to
FINDJIFCE to find the JFCB associated
with the data definition name {ddname)
of the DCE.

e It fills in certain defauited DCB
fields with information from the corre-

sponding fields in the JFC it keeps
track of the DCB fields modified, so
that at CLOSE time the X3 can be

restored to i1ts pre-0OPEN status.

In addition to these Operations Common
to all access methods, Open Common automat-
ically catalogs all VAM data sets.

routine for access-dependent open proces-
v ARA).

ient in virtual
sed, read-only, privileged rou-

CZCLAO -~ Entered by type-l
or type-2 linkage.

Input: Register 1 contains the address of
the CHAGSM table, CHAGSM (the general ser-
ces macro table), built by the expansion
SPEN macro instruction, consists of
e doubleword entry for each DCB to be
opened.

the

Data References:
CHAISA.

CHADCB, CHATDT, CHAGSM,

mModules Called:
FINDJFCB (CZAEB) -~- Find JFCB.

14 Part I:

SAM Open (CZCWO) -- SAM Open.

TAM Open {(CZICYA! -- TAM Open.

MSAM Open (CZCMZ) -- MSAM Open.
Open VAM (CZCOA) -- VAM Open.

IOR Open (CZCSC) -- IOR Open.

YVMA (CZCGA) ~-- Get virtual storage.

Addcat {CICFA) -- Catalogs all VAM data
sets. '

Seaxrch SDST (CZCQEY ~- Search shared data
set table.

Read/Write (CZCPE) -- Index sequential
read/write.

Exits:
Normal -- Return to calling program.

Error -- ABEND macro instruction.

Cperation: Open Common provides DCB
addressability and checks for valid DCB
identifier and nonzero ddname. If an error
condition exists, the task will ABEND.

One of the primary functions of Open is
to find the JFCB for the data set being
spened. If the data set is concatenated,
the address of the JFCB is picked up from
DCBCON; otherwise, the routins examines the
TDT for the JFCB address. 1f still not
found, the address of the JFCB is obtained
through a call to the FINDJFCB routine.

Following the call to FIRNRDJFCB, VaM data
sets are automatically cataloged by calling
Addcat .

A user with read-only access is allowed
to open a VAM data set even though ne has
specified it as modifiable for his purposes
{QUTPUT, EDIT, or other options). This
allows him to use the data set locking fea-
ture; he will be prevented from modifying
the data set by the VAM output routines.

An existing read-only data set not of VAM
organization and specified by the user with
other than the INPUT option will result in
an ABEND.

Open Common will turn on the conca-~
tenated system flag in the DCB if the JFCB
describes a concatenated data set.

The zero DCB fields are filled in with
corresponding entries from the JFCB, enabl-
ing the user to specify many data set
characteristics and handling options for

Access Method for BSAM, MSAM, TAM and IORED

this run that were not specified during
assembly.

Open Common gets a page of storage which
is used by the BSAM for IORCBs, and by
fence straddlers and VAM for save areas,
then links to the appropriate access-
dependent open routines.

Upon return from the access dependent
routine, Open Common tests for other DCBs
to be opened. The entire procedure is
repeated for each DCB and when all DCBs
have been opened, control is returned to
the calling routine.

SAM OPEN PROCESSING

The following routines are common to SAM
processing.

SAM Open Mainline Routine (CZCWO)

This routine performs opening functions
common to sequential access methods. It
branches to the Open Tape or Open DA rou-
tines to have the open processing completed
for magnetic tape or direct access devices
respectively (Chart AB),

Attributes: Reentrant, resident in virtual
storage, closed, privileged.

Entry Point: CZCWOl1l -- Entered only by
type-1 linkage.

Input: When this routine is entered,
register 1 contains the address of the fol-
lowing three word parameter list:

Word 1 -- Address of DCB being opened.
Word 2 -- Address of associated JFCB.

Word 3 -- Address of work area for building
IORCBs.

The PSECT of C2ZCWO contains the SAM com-
munication block (CHASCB), three temporary
control blocks - a DCB, a DEB and a DECB
which are used by the label processors for
reading or writing tape labels, and a para-
meter area for reading and writing format-1
DSCBs.

Data References:
CHATDT, CHADEC.

CHADCB, CHADEB, CHASCB,

Modules Called:

DA Open (CZCWD1l) -- Open direct access.
Tape Open (CZCWT1) -- Open tape.
Mainline EOV (CZCXEl) -- Write EOV trailer

and header labels when BOV encountered
during header label processing.

User Prompter (CZATJ1) -- Write a warning
message.

VMA (CZCGA2, CZCHA2) ~- Get virtual
storage.

VMA (CZCHA3) -- Free virtual storage.

Volume Sequence Convert (CZCWV1) -- Volume

address conversion.

Exits:
Normal -- Return to calling program.
Error -- Issue ABEND.

Operation: The SAM Open Mainline routine
initializes the SAM communication block
(CHASCB). 1If a DCB is currently opened on
the JFCB, the task is abnormally ter-
minated. Open options are checked against
the JFCB disposition parameter to see if a
data set with a disposition of NEW is
opened for input. If it is, and the task
is nonconversational, the task is abnormal-
ly terminated; for conversational mode
tasks, the routine gives the user a warning
and the option to continue.

SAM Open checks to make sure that the
data set has a mounted volume, and that the
proper volume is mounted. The routine also
checks to make sure no reading will be per-
formed on output data sets, or writing on
input data sets.

The main function performed by SAM Open
is the building of the data extent block in
privileged storage so that it cannot be
destroyed or changed by the user program.

If the device assigned to the data set
is a magnetic tape or direct access device,
control is given to Tape Open or DA Open
respectively. These routines, in turn,
call the proper DEB building routine.

If Tape Open or DA Open had been given
control, any storage dynamically obtained
by either routine is released by calling
FREEMAIN, and normal return is made to the
user.

Whenever Tape Open or DA Open encounters
errors, it posts an abnormal condition code
in the SCB and terminates via ABEND.

In case an end-of-volume condition
occurs while Tape Open is writing the head-
er, SAM Mainline will call Mainline EOV to
end the present tape with an EOV trailer
label and write the header on a new tape.

The block size of ASCII format tapes is
checked for minimum (18 bytes) and maximum
(2048 bytes) length.

Section 2: OPEN Processing 15

QOPEN is bypassed if neither GET nor PUT
is indicated in the macro field of the DCB.
If the data set being opened is a QSAM data
set, then QOPEN, a section of SAM Open
Mainline, is entered to perform those func-
tions unique to a QSAM data set. If
blocked records were indicated in the DCB
and the blocksize is zero, an ABEND exit is
taken. Otherwise, the block size is set
equal to the maximum logical record length.
Then, the number of buffers to be obtained
for the data set must be determined. If
the data set is opened for UPDATE, and
CNTRL is specified in the DCB, only one
buffer is needed. If the data set is
opened for RDBACK, and if the record format
is variable, three buffers must be
obtained. Otherwise, two buffers must be
obtained. The storage for buffers is
obtained by issuing a GETMAIN macro
instruction which returns the address of
the area obtained in register 1. This
address is saved in the DCB. If two or
three buffers are needed, their addresses
are calculated and stored in the DCB. The
protection class of the area will be the
same as that of the DCB. For data sets
using only one buffer, the DCB field indi-
cating the maximum number of reads or
writes which may be done before a check is
set to one, and for all others it is set to
two. Then the same procedure described
above is followed to obtain storage for
CSBMs QWK work area. {See the SAM sec-
tion of this publication for 2 description
of the QWK work area.)

The V-cons for the entry points CICSAA,
CZCSAB, CIZICSA¥, and CICSAS are set into the
DCB. If the data set is opened for output,
the GET V-con field in the DCB (DCBGTV) is
set to one. Otherwise, the PUT V-con field
(DCBPTV) is set to one. This is to insure
that no GETs are issued on an output data
set, and no PUTs issued on an input data
set.

Tape Open Routine (CZCWT)

The Tape Open routine completes the open
processing for a sequentially organized
data set on magnetic tape. It builds a
data extent block (DEB), uses the appropri-
ate label processor to process tape labels,
and completes the tape recording informa-
tion fields in the DCB. (See Chart AC.}

resident in virtual
privileged.

Reentrant,
read-only,

Attributes:
storage, closed,
Entry Points: CZCWT1 -- Entered with type-
1 linkage.

Input: Register 1 contains the address of
the SAM communication block (CHASCB). Note
that the SCB contains pointers to a DCB,
DEB, and a DECB in the SAM Open PSECT which
are used for reading or writing tape

16¢ Part 1:

labels, as well as pointers to the actual
DCB being opened and its associated JFCB.
Pata Referepcer: CHADCB, CHATD7T, CHASCH,
CHADER, CHAIGA.

Modules Called:
Control (CZCRB)
positioning.

-- Magnetic tape
Bump (CZCAB) ~-~ Request and verify mount of
new volume.

VMA (CZCGAR) -~ Get virtual storage.

LVPRV (CZCJL} -- Leave privileged state.

Build Common DER (CZCWB) -- Build the com-
mon portion of a DEB.

Tape Data Set Label (C2CWY) -- Tape label
processor.

Tape Positioning (CZCWP) -- Position tape.

User Prompter (CZCTJ) ~-- Inform user of
exror.

Exits:

Normal -- Return to calling program.

Error -- Via ABEND macro instruction.

Operation: If the tape is labeled, GETMAIN
is called to get an area of virtual storage
for label buffers. If the routine deter-
mines from the SCB that the correct volume
for the data set is not mounted, the Bump
routine is called to mount the proper
volume.

The Build Common DEB routine is called
to build the common portion of the DEB for
the data set being opened. This portion of
the DEB is copied into the "temporary” LDEB
pointed to by the SAM communication block
for use in processing labels.

The tape volume is positioned by calling
the Tape Positioning routine; the volume
labels are then written or read via Tape
Data Set Label. If the OPEN option 1is
INPUT, INOUT, or RDBACK, or if the JFCB
indicates MOD, the data set labels are pro-
cessed as input; otherwise the label 1is
processed as output.

The labels are processed unless the JFCB
indicates no labels. If the user requests
it, he is given control at this time,
through the DCB exit, to modify the DCB.

The tape recording fields in the user's
DCB are completed. The User Prompter rou-
tine is called to request directions from
the user if there are incompatibilities in
the user's specifications for tare record-
ing in his DCB; for example, recording

Access Method for BSAM, MSAM, TAM and IOREQ

density of 200 bits per inch is incompat-
ible with 9-track magnetic tape. Should
the user not supply a satisfactory solution
to the problem, Tape Open will effect an
abnormal end with an ABEND.

DA Open Routine (CZCWD)

The DA Open {Direct Access Cpen) routine
completes the open processing for a SAM
data set on a direct access device. It
builds a data extent block (DEB), process:.
DSCBs and user labels, sets necessary
fields in the DEB, and makes sure the prop-
er data set volume is mounted. (See Chart

AD.)

Aattributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.
Entry Point: CZCWD1 -- Entered by type-1
linkage.

Input: Register 1 contains the address of

the SAM communication block (CHASCB).

Data References: CHATDT, CHADSC, CHADCB,
CHADEB, CHASDA, CHASCB, CHAISA.

Modules Called:
Bump (CZCAB) -- Request and verify mounting
of new volume.

Obtain/retain (CZCFO) -- Obtain DA user
label and retain DA user label.

VMA (CZCGA) - Get virtual storage.

LVPRV (CZCJL) -- Leave privileged state.

Build DA DEB (CZCWL) -- Build direct access
DEB.

User Prompter (CZCTJ) -- Inform user of
error.

Read Format-3 DSCBs (CZCWR) -- Read and
chain format-3 DSCBs.

DA Input Label (CZ2CXN) -- Direct access
input label processor.

DA Output Label (CZCXU) -- Direct access
output label processor.

Exits:

Normal -- Return to the calling routine.

Error -- Via ABEND.

Operation: If the volume to be processed

is not the one which is mounted, DA Open
calls the Bump routine to mount the proper
volume.

The Obtain routine is called to get the
format-1 DSCB for the data set. If the
integrity bit is on in the DSCB, a PRMPT

macro is issued to ask the user if he wants
to continue. The integrity bit is set on
when the data set is opened, and set off at
EOV or CLOSE by Set DSCB. Therefore, if
the integrity bit is already on during the
open process, the data set was previously
opened but never closed.

If the data is being opened for output
and has & disposition of OLD, and the
expiration date in the DSCB has not been
reached, a PRMPT macro is issued to ask the
user if he wants to write on the unexpired
data set. The Retain routine is used to
write the format-1 DSCB on the volume. For
old data sets, zero DCB fields are com-
pleted with fields from the format-1 DSCB,
and the expiration date is stored in the
JFCB from the DSCB field.

Should the data set have format-3 DSCBs,
they are read by calling the Read Format-3
DSCB routine. Then since all extents are
known, the Build DA DEB routine is called
to build a direct access DEB.

If the user labels are specified, GET-
MAIN is used to get buffer space for label
processing.

DA Open sets on the integrity bit in the
format-1 DSCB when processing a volume with
a data set opened for OUTPUT, OUTIN, or
INOUT. As processing of each volume is
completed, the integrity bit is reset by
other BSAM routines.

The DEB is set to point to the first
data record except for a data set with dis-
position MOD. In the latter case, the DEB
is set to point to the end of the last data
recoyd as indicated in the format-1 DSCB.

The user labels are then read or written
using either the DA Input User Label pro-
cessor or the DA Output User Label
Processor.

DEB PROCESSING

The following routines are used to build
or modify the data extent blocks.

Build Common DEB Routine {CZCWB)

The Build Common DEB routine may be
entered to perform either of two functions.
It can obtain virtual storage to create a
DEB and initialize the DEB's common por-
tion. <ernatively, Build Common DEB may
be called to modify the common portion of
an existing DEB. (See Chart AE.)

Attributes:
storage,

Reentrant, resident in virtual
closed, privileged.

Section 2: OPEN Processing 17

Entry Point: CZCWB1 -- Entered by type-1

linkage.
lnput: Kegister 1 contains the addr=2ss of
the SAM communication block {CHASCB).

Data References:
CHATDT, CHASDA.

CHASCB, CHADCB, CHADEB,

Modules Called:

VMA (CZCGA) -- Get virtual storage.

User Prompter (CZCTJ) -- Issue message to
user.

Exits:

Normal =-- Return to calling routine.

Lrror —-- Via ABEND.

Operation: When the routine is called to

build the common portions of the DEB,
storage is obtained via GETMAIN and all the
fields in the common portions of the CHADEB
which can be filled from the CHADCB, CHAS-
DA, and CHASCB are initialized. The
remaining fields of the CHADEB are zeXxos.

If the routine is called to reinitialize
fields for the appropriate CHASDA, Build
Common DEB reinitializes, in both the CHA-
DEB and the temporary access method CHADEB,
those fields originally obtained from the
CHASDA and DEVOL.

This routine abnormally terminates if
the size of the CHADEB equals zero.

Ruild DA DEB Routine (CZCWL)

The Build DA DEB routine creates a data
extent block (DEB) for the first volume of
a data set on a direct access device.
Additionally, it can add extents to an
existing DEB, or build a new DEB for a mal~-
tivolume data set when the extents indi-
cated in the old DEB are obsolete. {See
Chart AF.}

Attributes: Reentrant, resident in virtual
storage, closed, privileged.

Entry Point: CZCWLl -- Entered by type-1
linkage.
put: Register 1 contains the address of

& SAM communication block (CHASCB). The
UHASCB will contain a pointer to the cur-
rent DEB, a pointer to a chain or format-1
andsor format-3 D3CBs, and an indication of
whether the routine is to construct or
extend a DA DEB. The routine assumes that
the chained DSCBs are in virtual storage.

pata References: CHASCB, CHADEB, CHADSC,
CHADCB, CHATDT, CHASDA.

18 Part I: Access Method for BSAM, MSAM,

modules Called:
VMA (CZCGA) -- Get virtual storage, free
virtual storage.

Point (CZCRM) =-- Logically reposition data
set.

Build Common DEB (CZCWB) ~-- Build and modi-
fy the comron portion of the DEB.

User Prompter (CZCTJ) -- Issue message to
user.

Exits:

Normal -- Return to caller.

Exror ~-- Via ABEND.

Operation: This routine first calculates

the actual size {(in bytes) of the DEB. The
size is the sum of: the number of bytes in
the common portion of the DEB, four times
the number of channel programs (DCBNCP)
less one, the number of bytes in the fixed
length direct access poertion of the DEB,
and sixteen times the number of extents to
pe contained in the DEB. The number of
extents is determined by searching the
DSCBs until either a null extent type code
or a null CCHHR chain address is found.

If the data set has not been opened, the
Build Common DEB routine is called to con-
struct and initialize the common portion of
a DEB. The extents (addresses) are then
stored in the DEB from the indication of
extents in the DSCB chain. Control is then
returned to the calling routine.

If the data set is open, this routine
has been entered with a DEB already in
existence. Therefore, a new DEB must be
generated and the present extents entered
in it.

GETMAIN is called to obtain virtual
storage for the new DEB. If the next
extent to be processed is zero, the fixed
portion of the old DEB is moved into the
new DEB, and the Build Common DEE routine
is called to modify the volume and device
fields in the DEB. Should the next extent
to be processed be non-zero, the common and
fixed direct access portions of the old DEB
are copied intc the new DEB, and Build Com-
mon DEB is called for the volume and device
field modifications of the new DEB. The
DEB fields for next 1/0, last I/0, and last
write addresses are initialized. If the
JFCB indicates DISP=MOD, Point is called to
position logically to the end of the data
set. In either case FREEMAIN is called to
release the storage of the old DEB, and
extents are added to the new DEB on the
basis of those extents currently indicated
in the DSCB chain. Control is returned to
the calling routine.

TAM and IOREQ

This routine abnormally terminates if:

1. The DSCB extents are not equal to the
number of calculated extents.

2. The DSCE extents are not numbered in
consecutive order.

D3CB_PROCESSING

The following routines concern SAM DSCB
processing.

Read Format-3 DSCBs Routine (CZCWR)

The Read Format-3 DSCBs routire causes
all format-3 DSCBs associated with one
volume of a data set to be read into virtu-

al storage and chained together. {See
Chart AG.)
Attributes: Reentrant, resident in virtual

storage, privileged.

Entry Point: CZCWRl1 -- Entered by type-1
linkage.
Input: Register 1 contains the address of

the SAM communication block {CHASCB).

bata References: CHASCB, CHADSC, CHADEB.

Modules Called:

Obtain/Retain (CZCFO) -- Obtain DA user
label.

VMA (CZCGA) -- Get virtual storage.

User Prompter (CZCTJ) -- Issue message to
user.

Exits:

Normal -- Return to the calling routine

Error -- Via ABEND.

Operation: It is necessary to compute the

amount of virtual storage needed for read-
ing the format-3 DSCBs. The correct number
of bytes is calculated and stored in
SCBF3Z. GETMAIN is called to get that cal-
culated number of bytes of virtual storage.

The DSCBs are then read into the storage
which GETMAIN supplied. The Obtain routine
is used to read each DSCB. The DSCBs are
chained together. Where there are no more
D3CBs to be read, control is returned to
the calling routine.

Set DSCB Routine (CZCXS)

The Set DSCB routine updates the infor-
mation in format-1 DSCBs, turns off the
integrity bit in the format-1 DSCB, and
writes a file mark on the DA output volume.
(See Chart AH.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Point: CZCXS1 -- Entered by type-1
linkage.
Input: Register 1 contains the address of

the SAM conmunication block (CHASCB).

Data References: CHADEB, CHADCB, CHADSC,
CHASCB, CHASDA, CHATDT, CHADEC.

Modules Called:
Reads/Write (CZCRA) -- BSAM read/write.

Obtain/Retain (CZCFO) -- Obtain DA user
label and retain DA user label.

FULREL {CZCRS) -- Convert full DA address
to relative address.

User Prompter (CZCTJ) -- Communicate with

user.

Exits:

Normal -- Return to calling program.
Error ~-- Via ABEND.

Operation: If the SCBRF1 flag is on, the

format-1 DSCB is read, the integrity bit is
set off, and the DSCB is written.

Otherwise, the format-1 DSCB is read via
OBTAIN, and the DCB type fields in the
format-1 DSCB, volume sequence numbexr, and
the last volume bit are written. The Last
Record pointer is set to point to the last
record written, the bytes left on the track
are stored in DSCLRD, the integrity bit is
set off, and the format-1 DSCB is rewritten
via RETAIN to reflect the above. A file
mark is placed following the last record
that was written on the volume and the
SCBFLG, which contains the SCBRF1 flag, is
set to zero.

MSAM PROCESSING

The following routines are used with
MSAM processing.

MSAM Open Routine {CZCMC)

The MSAM Open routine edits the DCB and
SDAT for valid options and combinations of
options, and constructs control tables
{DEB, ICRCBs, and DECBs) and work areas
(DEB page and buffer pages) in virtual
storage for use by the multiple sequential
access method. (See Chart AI.)

Attributes: Reentrant, read-only, public,

privileged, system, nonrecursive.

Section 2: OPEN Processing 19

kntry Point: CZICMCl -- Entered by type-1
1inkage from Open Common when the DSORG
field of the DCB specifies MS.

Input: When this routine is entered,
register 1 contains the address of the fol-
lowing parameter list:

word 1 ~- Address of the DCB.

Word 2 -- Address of the TDT JFCB.

.

pata References: CHADCB, CHASDA, CHATDT,
CHADEB, CHADEC, CHAIOR, CHAICB, CHADBP.

Modules Called:

VMA (CZCGA) -- Get virtual storage.

CKCLS {CEAQW) -~ Check storage protection
class.

Exits:

Normal -- Return to Open Common.

Erroxr ~- Via ABEND.

operation: When MSAM Open is entered,

register 1 contains the address of a parxa-
meter 1ist which contains a full word
pointing to the DCB and a full word point~
ing to the TDT JFCB. HMSRM Open accesses
these two addresses, and obtains the
address of the SDAT from the TDT. If a DCB
has been opened previously for this data
set, the task is abnormally terminated
unless it is a remote job entry (RJE) task.
1f it is RJE, the task is abnormally ter-
minated if more than one previous DCB has
peen opened. (The JFCB indicates a pre~
viously opened DCB.)

There are two tables (TBDD1B and TBDDZB)
in MSAM Open for each of the device depen-
dent parameter fields in the DCB. These
tables contain the allowable parameters and
the default parameters for the particular
device dependent fields. If the value of a
device dependent field does not match any
of the allowable parameters, the default
parameter is stored in the field. Checks
are made on fields of the DCB and SDAT for
valid optioms and combinations of options.
Any invalid condition causes abnormal ter-
mination of the task with the appropriate
message displayed on SYSOUT via the ABEND
macrc instruction.

The value of N, the maximum numbexr of
allowable IORCBs, is obtained from the SDAT
and a check is made to determine the
storage protection class of the DCB. If
the DCB is Class A (user read-write), a
GETMAIN macro instruction is issued to
obtain (N+3)/2 contiguous pages of Class B
(user read-only) virtual storage. These
pages will be used for the DEB page and the
(N+1) 72 IORCB pages which cannot be of
Class A storage. (See Figure 2 and Figure
3.) A pointer to the first page obtained

20 Part I:

0 pmmmmmmm e e ——--)
i DEB |

80 pmmmmm e 4

| IORCB |
2008 pmmmmmmm e e -
Work area fields used by MSAM |

2392 fomm e o e e e e 4
i ICB !
2440 4~ e e e {
i communications area + U4 bytes |
2456 p-mmrmmm - i
| Fixed area of IORCB i
2536} -4
| SYSURS !
2808 |- ——i
| SYSucCs i
3148t e e e e '

Figure 2. DEB Page Layout

O r"“' e e e . i e s, S S R O o o R S L o S o R ““

| Save Area (19 words) |
76 p-———=~ - - - -—4
| DOMSAM work area (5 words) |
96 fmmmm= e .
! N+1 DECBs }

§
{ {u8 bytes in length, each?]

| IS

Figure 3. DEEB Work Page Layout

is stored in the DCB. A second GETMAIN is
then issued to obtain N+1 contiguous pages
of Class A wvirtual storage for the DEB work
page and the N buffer pages which must be
of the same protection class as the DCB.

If the DCB is Class B (user read-only}
or Class C (user inaccessible), a single
GETMAIN is issued for (3N+5)}/2 contiguous
pages of virtual storage of the same pro~-
tection class as the DCB. In both cases the
same number of pages are cobtained, although
in the first case the two groups of pages
will not necessarily be contiguous. Except
for the case where the DEB and IORCB pages
cannot be Class A, all pages obtained are
of the same class as the DCB.

Fields in the DEB may now be initia-
lized, and pointers set to the other con-
+rol tables. For an RJE task, DEB pointers
in the TDT JFCB are enchained if a previous
DEB has been created during the task. A
skeleton ICB is built to specify an
attention-type interruption, with pointers
to the DCB and associated communication
area. The fixed area of an IORCB is built,
and additional fields in the DEB page are
initialized for use by the other MSAM
modules. If RJE, flags are set in the
IORCB and the DEB-.

Next, N skeleton DECBs are built in the
DEB work page following the 19 word save
area of DOMSAM, and a pointer to the first
DECB is set into the DCB. To initialize

Access Method for BSAM, MSAM, TAM and IOREQ

for looping, the DCB pointer to the current
DECB is initialized to the address of the
first DECB.

For fixed record format, the number of
logical records in the buffer is then com-
puted as the buffer size divided by the
logical record length, where the buffer
Ssize is equal to 4096 minus the number of
control bytes (currently 32). If this
count of logical records is greater than
100 on input, it is set to 100, and if i
is greater than 200 on output, it is set *o
200. For variable record format, th. nu i
er of logical records in the buffer is
initialized at zero. 1If RJE, logical reco-
rd size is stored in the DEB work page
area. The following fields are calculated
and saved: the maximum record count for
RJE PUT (4OUB8/(LRECL+2+15})}/2%2; the maxi-
mum record count for the RJE first PUT of
the first IORCB with machine control chara-
cters (4040/ (LRECL+2+15))/2#¢2; and the
maximum size of the PUT logical record
(LRECL+1+15)/8#*8. After calculation of
logical record size and count limit, a loop
is performed to initialize N skeleton
DECBs.

Now the N IORCBs are initialized in
their half pages. The fixed area of the
first IORCB (at the beginning of the first
full page beyond the DEB page) is built.
Since each of the other N-1 IORCBs is to be
built in the same manner as the first, the
fixed area of the first IORCB is moved to
these other N-1 IORCBs, which are located
at successive half-page boundaries follow-
ing the first IORCB.

Next, the fields in the MSAM portion of
the DCB are initialized. The DCB pointers
to the last, the current, and the user's
DECBs are set, and the fields indicating
the number of logical records and the
return code are both set to zero. A flag
is set in the DCB to indicate that the next
GET or PUT issued will be the first on this
data group.

The DCB macro field is then tested. If
it specifies PUT, the DOMSAM PUT VCON and
RCON are set into their respective fields
in the DCB, and unused VCONs in the DCE are
set to full words of hexadecimal Fs. IZ
the records are fixed length, the address
of the current logical record is computed
as the beginning-of-buffer address plus the
number of control bytes. If the records
are variable length, a test is made for an
RJE task. If RJE, the address of the cur-
rent logical record is set to the
beginning-of-buffer address plus the number
of control bytes plus 9. If not RJE, it is
set to the beginning-of-buffer address plus
the number of control bytes plus 4, and the
block control bytes (LLBB) are initialized
to X'0004°C*bb".

Ii{ the DCB wacry field specifies GEY,
the DOMSAM GET VCON and RUON are set iato
their respective fields in the Do, and
unused VCONs are s¢t to full words of hexa-
decimal Fs.

Control is then returned to Gpen Common.

Thexre is no return code.

SETUR_Routine (CZICMD)

The Set Unit Record (SETUR) routine spe-
cifies the unit record configuration fur a
local or remote printer or a card punch.

It is called as the result of a usex-
initiated SETUR macxo instruction, indicat-
ing how a device is to be set up ifor a job.
If the device is not already correctly set
up, the SETUR routine reguests an operator
to set the device as specified Ly the macro
and sends the user return codes indicating
the results. (See Chart AJ.)

Attributes: Privileged, reentrant,
only, public, system, nonrecursive.

read-

Entry Points:
CZCMD1 ~-- Primary entry point enteved with
type-1 or type-2 linkage.

CZCMD2 -- Asynchronous entry point entered
with type-2 linkage.

CZCMD3 -- Synchronous entry point entered
with type-1 linkage.

Input:

For entry at CZCMD1, register 0 contains
the address of the unit record device
setup parameter and register 1 contains
the DCB address.

For entry at CICMD2, register 1 contains
the ICB address.

For entry at CZICMD3, the ISA contains the
IORCB.

Data References: (CHADCB, CHASDA, CHADESR,
CHAIOR, CHAICB, CHAISA, CHADBP.

Modules Callied:
WTO (CZABQ) -- Write message L0 opevator cu
console typewriter.

SIR (C2CJS) -~ Specify interruption
routine.
DIR (CZCJD) -~ Delete interrvuption rouitine.

Open (CZCLA) ~- Open a data control block.

Find (CZCOJ}
data set.

~- Find a membex of a VPAM

Read (CZCPE) -~ Read a VISAM record.

Secktion 2: OPEN Processing 21

Close (CZCLB)
block.

-~ Close a data control

Reset (CEAAH)
1/0 error.

-- Reenable a device after

Exits:
Normal -~ For return from CZCMD1 register
15 contains one of the following codes:

ARt Completed successfully.

‘ou” Incomplete.

o8 Unrecoverable 1/0 error.

*oC” Bad parameter for SYSURS key.

°10° Invalid SYSUCS key specified
by SYSURS.

fiut Intervention required on RJE

device.

For return from CZCMD2 or CZCMD3 regist-
er 15 contains ‘00°'.

Error -- Abnormal termination via the ABEND
macyro instruction.

Operation: The operation at the three
entry points is:

MAIN ENTRY AT CIZICMDi: SETUR abnormally
rerminates if the DEB or DCB 1is invalid, or
if the DCB has not been opened.

Since the SETUR macro instruction is
issued repetively by the user until he
receives a return code other than 4 {(incom-
plete), the SETUR routine must determine
conditions existing each time it is
invoked. The internal return code in
DCBBCX, in combination with the SETUR-in-
progress switch (DCBSUR), determines the
line of processing to be followed upon
entry. DCBSUR is set on when SETUR is
first called for a device; it is set off
when SETUR has completed its processing, Or
when the invoking routine wishes to notify
SETUR to stop its processing when it is
next given control. Processing for the
varjious DCBSUR, DCBRCX combinations is as
follows:

DCBSUR off, DCBRCX less than 100: If the
device it other than a card punch or a
printer {or, if an RJE task, other than a
;rinter), SETUR exits to the caller with a
return code of normal completion.

For a card punch: {DCBSUR off, DCBRCX
less than 100). I1f the setup parameter
card form number is the same as the SDAT
form number, normal ending procedures are
followed. The return code is set for norm-
al completion, DCBSUR is set off, and con-
trol returns to the calling routine.

22 Part I:

If the numbers are not equal, a message
is sent to the operator via WTO requesting
him to mount the desired form, CZICMD2 is
specified as the asynchronous entry point
and SETUR returns to the caller with a
return code for incomplete while operator
response is awaited.

For a printer tor, if RJE, remote print-
er): (DCBSUR ctf, DCBRCX less than 100).
If the setup parameter key is the same as
the SDAT URS key, the desired configuration
is already set, so normal ending procedures
are followed as with the card punch.

Otherwise, the DCB for the VPAM data set
containing the member $SYSURS is opened,
and the four-line SYSURS record is read
according to the key given in the setup
parameter. If an error occurs on a READ,
SETUR saves the error information in the
MSAM DCB, closes the SYSURS file, turns
DCBSUR off, and exits to the caller with a
return code indicating either "invalid S¥S-
URS key® or "unrecoverable error®. When
the SYSURS record has been read successful-
iy, the SYSURS DCB is cliosed and checks are
made for appropriate printing specifica-
tions and valid SYSURS parameters. SETUR
abnormally terminates if the conditions
checked for are not met.

SETUR now checks that the required print
form, carriage tape, print chain/train and
density are now being used. If any of these
need to be changed, an appropriate message
is sent to the operator via the WTC macro
instruction, or, if an RJE task, tc the re-
mote operatoxr via an IOCAL macro instrac-
tion, after building a special IORCB.
CZCMD2 is specified as the asynchronous en-
try point by a SIR macro instruction unless
the task is RJE, in which case this entry
point will have been specified as part of
BULKIO initialization. SETUR returns an
'incompiete®’ indication while local or re-
mote operator response is awaited.

1f no such changes are necessary, the
SYSURS form type value is saved in the DCB,
and SETUR tests for use of the Universal
Character Set (UCS) feature.

For UCS printing, SETUR abnormally ter-
minates if the folding code is invalid. If
the SDAT and SYSURS values for the UCS key
do not match, the DCB for the VPAM data set
containing the VIP member $SYSUCS is
opened, and the 5-line SYSUCS record is
READ according to the key given in SYSURS.
If no error occurred on the read opera-
tions, the SYSUCS DCB is closed, an IORCE
is built to load the UCS buffer and is
executed with CZCMD3 specified as its post-
ing entry point. SETUR then exits to the
caller with a return code for incomplete.
If an error occurred when reading the SYS-
Ucs record, the SYSUCS file is closed,

Access Method for BSAM, MSAM, TAM and IOREQ

DCBSUR is set off, and SETUR returns to the
caller with a return code for an invalid
SYSUCS key or data set. VAM error return
information may be found in the MSAM DCB.

If the SDAT and SYSURS values for the
ucs key match, the UCs buffer does not have
to be loaded. 1f the UCS strikeout
character is to be used, it is tested for
validity (ABEND results if it 1is invalid)
and converted and saved in the DCB. The
SYSURS folding code is saved in the SDAT,
and SETUR proceeds to test for printer ali-
gnment (see below).

If the UCS feature is not in use, loading
the UCS buffer is not necessary, so testing
for print alignment occcurs immediately.

If print alignment is necessary {(unless
an RJE task), an IORCB specifying CZCMD3 as
its posting entry point is built to print
50 lines on the printer for purposes of
alignment. A message 1is sent to the opera-
tor via WTO requesting him to align the
printer, and SETUR returns an incomplete
while operator response is awaited. CZCMD2
is specified as the asynchronous entry
point.

If no alignment is necessary, or if thne
task is RJE (in which case alignment is not
possible), processing is completed. The
URS key from the setup parameter is stored
in SDAT, DCBSUR is set off, any active
interruption is deleted, (not necessary if
the task is RJE), and control returns to
the caller with the return code in register
15 set to "completed successfully™ or "com-
pleted with unrecoverable 1/0 error.”

DCBSUR on, DCBRCX not in the range 100
through 136: SETUR abnormally terminates
when this invalid condition occurs.

DCBSUR on, DCBRCX = 100: The operator has
not vet mounted the requested form on the
card punch. Until he doe¢s, control is
returned to the caller with a return code
for incomplete.

DCBSUR on, DCBRCX = 104: The operator has
mounted the specified form on the card
punch as requested. The punch form number
from the setup parameter is therefore moved
into the corresponding field in the SDAT,
and normal ending procedures (see above)
are followed.

DCBSUR on, DCBRCX = 108: The operatoer has
not yet mounted or set the SYSURS-specified
form, carriage tape, chains/train or density
on the printer as reguested. Control
returns to the user with a return code for
incomplete.

DCBSUR on, DCBRCX = 112: The operator has
mounted or set the requested form, carriage

tape, chainstrain, and density for the
printer. The corresponding four SDAT
tields are therefore set from the SYSURS-
specified values, and processing continues
as 1f the four SDAT fields were already
correctly set (see above).

UBSUR on, DCPRCX = 1le6: SETUR 1s in the
~rocess of loading the UCS buffer. 1t the
«ffer loading operation is not yet com-
plete, control returns to the caller with a
return code for incomplete. If the loading
15 complete, but the DEB indicates an
error, DCBSUR is turned off and SETUR exits
to its caller with a message to the opera-
tor and return codes for "unrecoverable
erroxr™. I1f intervention is required, a
message 1S sent to the operator with a
return code indicating incomplete. If
there is no errxor, an IORCE specifying
CZCMD3 as its posting entry point is built
and executed, to print the UCS buffer along
with the UCS form of the verification mes-
sage, and control returns to the caller
with a return code for incomplete.

DCBSUR on, DCBRCX = 120: SETUR is in the
process of printing the UCS buffer and
verification message. If the printing is
not yet complete, control returns to the
caller with a return code for incomplete.
If the printing is complete, but the DEB
indicates an error, DCBSUR is turned off
and SETUR exits to the caller with a mes-
sage to the operator and return codes for
"unrecoverable error®. If intervention is
required, the message is sent to the opera-
tor with return code indicating incomplete.
If there is no error, a WIO is issued to
write the EBCDIC form of the verification
message on the operator's console, and to
request that the operator verify that this
verification message matches the one pre-
viously printed on the printer. CZCMD2 is
specified as the asynchronous entry point,
and SETUR returns to the caller with a
return code for incomplete while operator
response is awaited.

DCBSUR on, DCBRCX = 124: The operator has
r-t yet verified that the print line
- peared identical on the printer and the
_.sole. Control is returned to the caller
wath a return code for incomplete.

DCRSUR on, DCERCX = 128: The operator has
verified the UCS printing. The UCS key is
stored in the SDAT and the universal-
character-set bit is turned on in the DCB.
Processing then continues as if the SDAT
and SYSURS values for the UCS key matched
(see above).

DCBSUR on, DCBRCX = 132: The alignment
lines are being printed and the operator is
checking printer alignment. If the DEB
indicates an error, any active interruption
is deleted; DCBSUR is turned off, and con-

Section 2: OPEN Processing 23

trol returns to the caller with a4 message
to the operator and return code tor ®"unre-
coverable error®. 1t no error is indi-
cdted, control returns to the caller with a
return code for incomplete.

[BSUR on, DCBRCX = 136: The operator has
successfully aligned his print form. If a
rraint IORCB 1s still outstanding, control
1o returned to the caller with a return
code for incomplete. I1f there i1s no out-
standing IORCB, processing continues as if
nc alignment were necessary (see above).

DCBSUR on, DCBRCX = 140: A start I/0 error
retry has failed and DCBRCX is set to 140
pefore yeturning from the SETUR synchronous
interruption routine entered at CZCMD3. At
the next SETUR macro instruction, the SETUR
routine, entered at its main entry point,
will detect this condition, set a return
code of & {unrecoverable I/0 error) in
register 15, and return.

DCBSUR off, DCBRCX not less than 100: The
caller has turned off the DCB SETUR-in-~
progress bit in order to prematurely ter-
minate the SETUR processing. In this case,
the SDAT carriage tape, chain/train, fold-
ing option, UCS key, URS key, and density
tields are zerced if the device is a
printer.

ASYNCHRONOUS INTERRUPT ENTRY AT CZCMD2:
SETUR is given control at its asynchronous
entry point, CZCMDZ, when an operator
responsge f{an attention interruption caused
by changing the state of a device from "not
ready™ to "ready®™) is received.

If neither printer alignment nor
wntervention-required retry is in progress,
DCBRCX is incremented by 4. Otherwise, un-
less there is an outstanding IORCB or error
indicated, a RESET will be issued and an
IOCAL SVC executed. Then, unless printer
alignment is in progress or the task is
wJE, the interruption routine will be
deleted. In all cases, control returns to
the caller with a return code of 0 in
register 15.

SYNCHRONOUS INTERRUPTION ENTRY AT CZCMD3:
The synchronous entry point of SETUR is
given control by the task monitor when the
I/0 activity associated with an IORCB
terminates.

Errors occurring during the I/0 activity
will result in either no retry or limited
vetry, depending upon the type of exror.
Any tinal error is recorded in the DER.

If a unit check or unit exception is
indicated when alignment is in progress,
put no intervention is required and no
errors are indicated, DCBRCX is incremented
by 4 to indicate completion of alignment,
and the number of outstanding IORCBs is
reduced to zero. Then, as in all cases,

24 pPart I

control returns to the task monitor with a
return code of 0 in_vegister 15.

In an RJE task, 1if a unit check with
intervention required is detected, a return
code of 20 will be placed in the DECB for
reference by BULKIG. If, for an RJE task,
a unit check is not detected but a unit
exception or incorrect length is detected,
set-up for retry after continuation is spe-
citied and return is made to the Task Mon-
itor. (The remrote operator must feed in a
CONTINUE card for the job to continue; this
will cause the next entry to be at the
asynchronous entry roint, CZCMD2.)

TAM_PROCESSING

The following routine is used with Ter-
minal Access Method (TAM) processing.

TAM Open Routine {(CZCYA)

In continuing the open processing from
Open Common, TAM Open is called o perform
additional opening functions for terminals.
This includes building control blocks and
providing buffer areas for initiating com-
munications with a terminal. TAM Open then
returns to Open Common except when an
abnormal end is required, in which case it
goes to ABEND. (See Chart AK.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Point: <C{ZCYAl -~ Entered by type-1i
linkage. .
Input: When this routine is entered,

register 1 contains the address of the fol-
lowing parameter list:

Word 1 -- Address of the current DCB being

opened.
Word 2 -- Address of the associated JFCB.
Data References: CHADCB, CHATDT, CBASDA,
CHADEB, CHATOS.
Modules Called:
Write {(CZCYM) ~- TAM write.

Che~k (CZCRC) =~ Check.
VMA {(CZCGA) -~ Get virtual storage.
LVPRV (CZCJL) -~ Leave privilege mode.

WTO (CZABQ) -- Write to operator.

ABEND (CZACP) -- Abnormal task termination.

ADDEV (CEAAC) =-- Add device to task device
list.

RMDEV (CEAAD) -~ Remove device from task

device list.

Access Method for BSAM, MSAM, TAM and IOREQ

Exits:
Normal -- Normal RETURN to calling routine.

Error -- ABEND macro instruction.

Operation: TAM Open initially saves the
general registers, gets the TOS page and
examines the number of DCBs that were
opened for a given terminal.

e If this number is equal to 0,
minal definition is checked.

the ter-

¢ If this number is greater than 0 and
less than or egual to 255, TAM Open
continues the processing by updating
the count of DCBs in the SDAT.

e If this number 1is greater than 255 (the
maximum number of opened DCBs allowed
for a terminal), TAM Open branches to
ABEND.

The terminal is checked for definition
and type when the first DCB is opened for
this terminal.

» If the terminal is defined, TAM Open
continues the processing by updating
the count of DCBs in the SDAT.

e If the terminal is not defined this
routine branches to ABEND.

e If the terminal is defined and is eith-
er a 2741 or a 1050, the system must
determine which of the two terminal
types is involved. This determination
is made by issuing the LCD macro
instruction.

TAM Open issues a GETMAIN macro instruc-
tion to obtain one page of virtual storage
for the data extent block (DEB), and the
terminal operational status table {(TOS)
which includes the 1/0 request control
block {(IORCB). Pointers are set up between
these blocks and blocks that were created
before TAM Open, and are illustrated in
Figure 4. The purpose of these pointers
between TAM Open allocated blocks and pre-
viously existing blocks is to facilitate
their use by all TAM routines under normal
and abnormal conditions.

DEB virtual storage, after being ini-
tially allocated during TAM Open, has the
following pointers set and data moved:

(A) The DEB is pointed to by the DCB.

{B) The DEB points to the DCB and the
SDAT.

(C) The DEB points to the SDAT terminal
information. This SDAT terminal
information pointer is moved from the
JFCB.

ord @ DCB
! (E)
(A)
*10$
*IORCB
*DEB I B
()

(D)

@SDAT

T
t

Terminal

Ve
Information

A JFCB |

@ Blocks created before TAM OPEN
+ Blocks for which TAM OPEN allocates space

Pointers existing before TAM OPEN
Pointers set up during TAM OPEN

Data moved during TAM OPEN

Parameter list pointers

Figure 4. TAM Open: DEB and TOS Storage

Allocation and Pointers

{D} The SDAT terminal information is
loaded into the DEB. This terrinal
information is ioaded into the DEE.
This terminal information is used by
the TAM Read/Write and TAM routines
and includes the terminal type, con-
trol unit type, data adapter and model
code of the terminal.

TOS virtual storage is allocated by TAM
OPEN and is pointed to by the DCB. TAM
Read/Write uses the TCS area to build the
channel command words. It is also used by
TAM Read/Write, TAM Posting, and TAM Open
for communication of common information.

Processing ends with the terminal DCB
open count in SDAT incremented by 1 for
this current DCB and a return to Open
Common .

Section 2: OPEN Processing 295

PROCCESSING

I following routine is used with
Inrat “Output Request (IOR) processing.

sen Routine (CZCSC)

iy continuing the open processing from
"owwon, I0R Open is called to allocate
1= for control blocks and complete the
veguiced fields in the DEB to allow the
pvocessing of the IOREQ macro instruction.

o1t then xeturns to Open Common
n an abnormal end is required, in
it goes to AREND, {See Chart

Resntrant,

Wnen this routine is entered,

I contains the address of the fol-
vayameter list:
wrd % -- Address of DCB being opened.

- Address of associated JFCB.

Address of workpage obtained by
v Common.

CHADCE, CHATDT, CHASDA,

-~ Return to calling routine.
Fryoy ~- ABEND macro instruction.

IOR OPEN saves the general
Tests are then made to check

s Thne IOREy facility is allowed on the
device, by checking that the SDAIOR
field in SDAT is egqual to one.

s The OCB identification is valid, by
checking that the DCBID identifier is
equal to #%4*%.

e The TDT indicates that the IOREQ faci-
lity is specified in the DD command
(TDTDSV=RX). The DCB was previously
checked in Open Common {(DCBDSO=RX)
which called for IOR Open. The data

28 Part I:

resident in virtual

set organization requirements must be
specified at data definition time only.

e The user-supplied NCP parameter, in the
DCB macro instruction, 1is not greater
than the maximum (DCBNCP=99). If the
user did not set a value, or set a
value of zero, a value of 1 is
inserted.

e The volume is not public, as indicated
by the volume public flag (TDTV1=0) not
being set. IOREQ can only be used on
private volumes.

An ABEND exit is taken if any of the
above error ccnditions occcur. Processing
continues by caluclating the area needed
for the DEB plus additional contiguous
bytes for the IORCB. The length of the DEB
is set to contain a common area plus extra
storage for each NCP specified. This
amount is rounded to a multiple of eight so
that the contiguous bytes to build the
IORCB originate on a doubleword boundary.

IOR Open then requests, with a GETMAIN
macro instruction, one page of virtual
storage for DEB and IORCB to be used by
IOREQ and IOREQ Posting. This area is ini-
tially zeroed.

DEB virtual storage, after being ini-
tially allocated during IOR Open, has the
following pointers set and data moved
{refer to Figure 5):

(A) The DEB is pointed to by the DCB and
JFCB.

{(B) The DEB points to the DCB and JFCB.
(C) The DEB points to the IORCB.

(D) The DEB points to the SDAT address
and device address information.
These SDAT information pointers are
contained in the JFCB.

(E) The JFCB data type code information
is moved to the DEB.

Some other DEB fields listed below are
also completed: :

e The identification field (DEBID) is set
to *(.

¢ The size field (DEBSIZ) is set to DEB
area size.

e The IOREQ Posting VCON (DEBPSV) is set
to IOREQ Posting entry point and the
RCON (DEBPSR) is set to IOREQ Posting
PSECT address.

Access Method for BSAM, MSAM, TAM and IOREQ

(8

DCB--_n_~

DCBDEB]
, A)
DEBCCB Des (
€) J//’///WI/I////&’/IZWA/ DEBCLY (Data Type Code) Work Page
? O)——=—————== —o- DEBSDT (SDAT Add-)
é | o ———— - o DEBSYM (Sym. Dev. Addr)
% ') DEBFC
é ll : (C)r—-—— DEBWRK
/ | | - , {ORCB
| |
e
//{/; i ', TDTDEB 7 Jree @
é : b e e e — — TDTID] (n SDAT)
% L= — TDTID} +°2 (To SDAT)
[’////////////AV//YI//////////// 107DEYV

Parometer list pointers
—

—— . —

Wvs/7/147717

Figure - 5. IOR OPEN:

DEB pointers, to and from DCB and JFCB, and to IORC
SDAT pointers from JFCB moved to DEB -

Data Type Code informoﬁonmovéd from JFCB to DEB

e The number of channel.programs (NCP)
field in DEB (DEBNP) is set to the
value in the DCB field. (DCBNP).

e The DEBDVC field is set with a hex code
indicating the device (magnetic tape,

direct access,

unit recoxrd).

e The DEBUNT field is set with a hex code
indicating the unit type (2400, 2311,

ceeeda

e The maximum number of IORCBs allowed

field in the DEB

(DEBIO) is set to the

maximum in the SDAT field (SDAMRB).

e The DCB protection class field in the
DEB (DEBCLS) is set to the appropriate

value.

It is as obtained as a result

of an SVC, generated by a CKCLS macro

instruction.

A final check on this

value within IOR Open assures that the
user is privileged if the access to the

volume is privileged.

Basic Pointers and Data Moved from JFCB to DEB

'e A pointer to the DECB field in the DEB

{DEBDEL) is not completed during IOR
Open but during IOREQ. However, the
address of DEBDEL is stored in a DCB
field (DCBDEC) during IOR Open.

A final check is made of both the DCB

protection class and the type of access to
the device.

Then,

e If the DCB protection class is not pri-

vileged (DEBCLS+1) and the type of
access to the device is privileged
{TDTVPY=1), an ABEND exit ocCcCurs.

1f po DCB protection class can be
determined, an ABEND exit occurs.

1f neither of the above criteria are

met, a return to Open Common OCCUrs.

Section 2: OPEN Processing 27

SECTION 3: READ/WRITE

KREAD/ZRITE PROCESSING

This section describes the BSAM Read and
Write, MSAM Get, Put, Read and Write, TAM
Read and Write, and IOREQ routines.

BEAM Read/Write Routine (CZCRA)

Reads/Write routine creates an ICRCE
+ contains the appropriate chamnel com-
mands to perform the I/70 operation which is
requested by the BSAM READ or WRITE macro
instruction. The I0ORCB is passed to the
I/0 supervisor so the channel commands may
be executed. {See Chart BA.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged,
nonrecursive.

CZCRAS -~ HMain entry point to the Read/
Write routine; entered by type-1 or
type-2 linkage.

CZCRDS -~ Entry point for building an IORCB
{Build subroutine); entered by type-1
linkage.

CIZICRES ~-— Entry peint for adding the chan-~
nel program {(Construct subroutine’;
entered by type-1 linkage.

Input: Register 1 contains the address of
a DECB containing all information which was
coded as parameters of a Read or Write
instruction.

Data References: <CBASDA, CHAIOR, CHADCE,
CHADEB, CHADEC, CHAVPS.

Modules Called:
AWAIT (CEAP7) -~ Await an intexruption.

IOCAL {CEAAO) -- I/0 call.
CKCLS (CEAQM) -~ Check protection class.

ASCII Translation and Converxrsion {(CZCWA) -
When an ASCII Write request is

encountered.
Normal -~ Return to the calling routine.
Error -~ Abnormal termination of task by

ABEND macro instruction.

Operation: The main entry point processing
at CZCRAS is as follows:

28 Part I:

During open processing, a queue cf
zeroed DECB pointers 1s established in the
DEB for the data set. The main routine
stores the address of the input DECB point-
ers in the reserved pointer area.

When this routine is entered, 1f the
passed DECB is the same as the first DECR
in the gueue, it is the Check routine that
has entered the Main routine to have a read
Or write request reissued.

If entry was not by Check, the new DECE
is inserted into the queue if there is
room. The "in use® and “intercepted® flags
are set on in the new DECB. Should the
"number of IORCBs allowed®” count permit
another IORCB to be given to the 1/0 super-
visor, a search of the gqueue of DECBs is
initiated to find the first request to be
fulfiiled. If that particular DECB is
associated with an ASCII Write reguest that
was intexcepted by the I/0 supsyvisor, a
call to the ASCII Translation and Conver-
sion routine (CZCWA) is made to put the
record back in EBCDIC format. Then the
main routine proceeds to have the IORCB
built by the Build routine and filled in by
the Construct routine. Successful con-
struction of an IORCB will then permit the
main routine to execute the IOCAL SVC which
requests the I/0 supervisor to perform the
170 operation.

The build entry point processing at
CZICRDS is as follows: The Build rcutine
generates a skeleton IORCB and stores sev-
eral parameters in it.

Build returns to the Main routine which
stores the address of the SAM Posting rou-
tine in the IORCB, and branches to the Con-
struct routine to complete the IORCB by
constructing a channel program in it.

The construct entry point processing at
CZCRES is as follows: The Construct rou-
tine is passed a pointer to the skeleton
IORCB which was generated by Build. The
Construct routine must complete the IORCB
so that it may be used by IOCAL. Fami-
liarity with IOCAL as presented in 3Systen
Programmer's Guide, GC28-2008, is required
to understand the logic of Construct .

The first decision Construct must make
is whether to use the IORCB as a buffer or
to build a page list which points to the
user's data pages. If the data exceeds

© 1800 bytes, the IORCB camnct be used as a

buffer, and a page list must be
constructed.

Access Method for BSAM, MSAM, TAM and IOREQ

For 7-track tape the channel program
which is generated consists of two CCWs.
The first CCW is a Mode Set command which
sets the density, data converter, and tran-
slator as specified in the tape option
field in the DCB. The second CCW is the
read or write command. For 9-track tape,
just the one CCW for the read or write is
required.

For an ASCII write request, ASCII Trans-
lation and Conversion is called to transl-
ate the data to be written from EBCDIC to
ASCII and convert variable-length records
from V to D format (standard IBM to Ameri-
can National Standard). ASCII output may
occur only to 9-track tape.

For direct access, the channel program
is more complex. The generated channel
program depends on whether the requested
operation is a read or write, whether track
overflow is specified, and what the record
format is.

The channel program for a DA read is
generated as folliows. A full DA device
address is in the form bbCCHHR, where bb is
two bytes which indicate bin number {data
cell), CC is two bytes which indicate
cylinder number, HH is two bytes which ind-
jcate track (or head) number, and R is the
record number on the track. The first CCWs
are two Seek commands to the next I/0
address (bbCCHH) which is found in the DEB.
The first Seek command is software chained
because a seek takes a relatively long time
to execute (arm movement may be necessary),
and hardware chaining of commands makes the
channel unavailable to other tasks. There-
fore, software chaining will cause the two
seeks to be executed without locking other
users out of the channel. The second seek
command is command chained to the rest of
the CCWs in the channel program, SO execu-
tion of the second seek gives the task
exclusive control of the channel until the
execution of the channel program is con-
cluded. The next CCW is a search for the
identifier CCHHR, which will position the
DA device to the key field of the record.

A TIC command follows the search toc cause
the channel program to loop until the reco-
rd is found. The Read command {(read key
and data) is next in the channel program
and it is followed by a NOP command.

When reading format-U or V records, it
is not known where the next record to be
read is. This is because the number of
bytes in the current record is not known.
If the end of the current record cannot be
calculated, the beginning of the next reco-
rd is not known. So when reading format-U
records, the search command is directed to
the last I/O address. Then three CCWs are
generated: read-no transmit, read, and
NOP. The READ-no transmit causes the last

record to be passed by the reading head,
and the read key and data causes the
correct record to be read.

The channel program for a DA write is
generated as follows. Using the last write
address from the DEB, the first four chan-
nel commards are generated: seek, seek,
search, TIC. The reason for using the last
1,0 address is that it is known where the
last record was written, but if format-U
records are being written, it is not known
where the next record should go. Then a
read-no transmit, followed by a write-
count, key, data is generated. The Read-no
transmit brings the head past the last
record which was written and then the WRITE
puts the new record on the volume segquen-
tially following the previous record. If
track overflow is specified and the record
to be written is larger than the room
remaining on the current track, the record
is begun on the current track and continues
on the next sequential track. However, no
record can be split between cylinders on a
DA volume.

As in the channel program for a DA read,
the write channel program is ended by a NOP.

The Construct routine uses closed sub-
routines to help in the completion of the

IORCB. They are:

ENTCCW -- Enters a CCW into the IORCB.

SCHCCW -- Generates SEEK, SEARCH, and TIC
CCWs, and puts them in the IORCB.

SETPAG -- Sets up a page list in the IORCB.

NXTIO -- Computes the MBBCCHHR of the next
record to be written on a DA
volume.

Intercepting a Read or Write Reguest: The
DECB which is passed to the SAM Read/Write
routine contains an intercept flag set by
GAM Reads/Write when the I/0 reguest is not
actually initiated. {(IOCAL is not given
the IORCB built for the DECB).

There are several reasons why the I/0
request of a particular DECB may not be
initiated. For example, if a read request
is given and the current volume was used up
on the preceding read, the DECB is set as
intercepted and the EOV request flag in the
DECB is set on. I1f a write request is
given and there is no more room in the cug~-
rentlvy allocated extents, the same flags
are set. If the DECBs regquest 1I/0 on the
same devices ana the first one encounters a
hardware error condition, the intexcept
flags in the remaining DECBs are set on s<
the I/0 will not be initiated unless the
hardware error is cleared up. If this were
not done, each DECB I/O reguest could run

Section 3: Read/Write 29

s

into the same hardware problem and a per-
nanent error would be found, not once, but
many times.

When a DECB is operated upon by the
Check routine, the intercepted flag is
tested. Should there be no serious error
conditions posted in the DECB, the Check
routine, in addition to performing other
services, will reinitiate the I1/0 request
by passing the DECB back to the Read/Write
routine. This I/0 request is given immedi-
ate attention by Read/Write because it is
the first entry in the queue.

DOMSAM blocks and deblocks logical reco-
rds into system butfers when GETs or PUTs
are issuved, invokes MSAM READ/WRITE to
build and execute the IORCB necessary for
1/0, and provides the user with a return
code describing the outcome of his GET orx
PUT request. The routine runs in the same
privilege as its caller. (See Chart BB.)

Attributes: Read-only, public, reentrant,
nonrecursive, assumes privilege of caller.

Entry Points:

CZCME1 -- Entered upon issuance of a GET
macro instruction which generates type-1
linkage.

CZCMEZ2 -~ Entered upon issuance of a PUT
macro instruction which generates type-i
linkage.

Input:

Register 0 -- Address of user-specified

area for move mode GET or PUT.
Register i ~-- Address of the DCB.

pData References:
CHADBP, CHAISA.

CHADCB, CHADEB, CHADEC,

Modules Called: MSAM Read/Write (CICMF) -~
To read or write records.

Exits:
Normal -~ Following a GET, register 15 con-
tains one of the following return codes:

‘00" Normal completion. Register 1 points
+o record obtained in buffer if loc-
ate mode, user area if move mode.

04' TReguest incomplete.

‘08' Unrecoverable I1/0 erxror. Register 1
points to (failing) record in buffer
if locate mode, in user area if move
mode register 0 points to user DECB.
*0c' End of data set reading. (No record
obtained). Register 0 points to user
DECB.

30 Part I: Access Method for BSAM, MSAM,

*10' cControl card sensed reading. Regist-
er 1 points to control card in buffer
if locate mode, user area if move
mode. Register O points to user DECB
14 Intervention is reguired in an RJE
task because the line is discon-
nected. (No record is obtained.)

Normal -- Follcwing a PUT, register 15 con-
tains one of the following return codes:

*00°' Normal completion. Register 1 points
to next available location in buffer
if locate mode, to user area if move
mode.

‘04" Request incomplete.

'08° Unrecoverable I/0 errcr. Register 1
points to buffer of record that
failed to be written. Register 0
points to user DECB.

0c Intervention is required in an RJE
task because the line is discon-
nected. {No record is written)

Frror ~- ABEND macro instruction is used
for abnormal end termination.

Operation: . DOMSAM has no PSECT. It uses
the first 19 fullwords of the DEB work page
as its standard register save area, obtains
adcons from the DEB page (CHADBP)}, and
maintains switches and other variable
information in the MSAM portion of the DCB.
Its work areas are the DEB work page, which
contains DECBs, and the buffer pages.

Upon entry to DOMSAM, a transfer pointer
is set to indicate whether a GET ox a PUT
has been issued. Checks are then performed
to be certain that the DCB and the DEB are
valid, and that the DCB has been opened. If
any one of the three conditions is not met,
execution is terminated by an ABEND macro
instruction. If all conditions are met,
processing is categorized as GET or PUT.

GET Processing: If the GET macro instruc-
tion is the first issued on the data group,
or if the previous GET emptied a buffer,
the end-of-buffer switch in the DCB will be
on. In this case, MSAM Read/Write must be
invoked to either prime all the buffers or
refill the buffer just processed. If prim-
ing is to be done, no IORCBs may be out-
standing or the return ccode will be set to
indicate incomplete, and a return will be
made to the caller.

For each buffer to be filled, the cur-
rent DECB is marked in use (read/write
requested) and initialized, and MSAM Read/
Write is invoked. Upon return from Read/
Write, the current DECB is checked to see
if it is the last in the list, and if so,

TAM and IOREQ

its pointer is reset to point to the first
DECB. 1If not, the DECB pointer is incre-
mented to point to the next DECB.

A check is then made to see if all the
buffers are to be primed, and if 350, the
next buffer is filled by setting up the
DECB and invoking MSAM Read/Write as
before, until the last DECB has been pro-
cessed. At that point, the current DECB
address is reset to point to the first
DECB.

The DCB pointer to the current buffer
page is set to the address of the buffer
associated with the current DECB. Then the
DECB is tested for completion, and if the
is0 is not yet complete, control is
returned to the caller with a return code
indicating that the GET has not been com-
pleted and must be reissued at a later
time. In an RJE task, if the line to the
remote device is not connected, the return
code will indicate intervention is
required.

If the DECB is posted complete and indi-
cates normal completion with neither a unit
check (indicating that a control card has
been read) nor a unit exception (indicating
end of data set), the normal completion
code of zero is set into the DCB for even-
tual use as a return code. The pointer to
the current logical record within the buff-
er is then set immediately beyond the 32
control bytes in the buffer, and the end-
of-buffer address is computed by adding to
that address the product of the logical
record length and number of records that
can fit in the buffer. Following a trans-
mission from a remote reader (RJE task),
this end-of-buffer address is adjusted
based on whether an odd or even number of
logical records were read into the buffer.

If the DECB is posted complete without
errors, but unit check or unit exception is
indicated, or if the DECB is posted com-
plete with errors, the appropriate return
code is set into the DCB, and a copy of the
current DECB is moved to the user's DECB
area. In this case, the end-of-buffer
address is computed as the byte immediately
following the last normal input record by
adding the displacement-to-error field of
the DECB's modified CSW to the beginning-
of-buffer address. This displacement must
be decremented by 84 if, in an RJE task,
only one logical record was read in during
the last transmission. The current logical
record address is computed as 32 bytes
beyond the beginning of the buffer.

Following this, or if no buffer priming
or refilling was necessary to begin with, a
check is made to determine if the current
logical record is valid by comparing the
record address with the end-of-buffer

address. If it is lower, normal steps will
be taken to get the record for the user.
Otherwise, one of the unusual conditions
(end-of-data-set, contrel card, or record
with error) exists, and the return code in
the DCB is set into register 15 for the
user. The end-cf-bufter and buffer-priming
switches are set, the count of logical
records within the buffer is set to zero,
and the pointer tc the current DECB is
reset to point to the first DECB in the
list so thet the next GET issued will re-
prime all the buffers. If the unusual con-
dition is an end-of-data set, there is no
record to be obtained for the user, and
control is returned immediately. However,
if there is a record beyond the buffer end
address {either a control card or a record
with an error), it is returned to the user
as described below.

When the current logical record is
valid, it must be returned to the user. If
the GET is in locate mode, the current
record address is set into register 1; if
the GET is in move mode, the record is
moved to the user-specified area whose
address was supplied in register 0. The
current record address iz then incremented
by the logical record length to point to
the next record, and the count of logical
records already processed within the buffer
is incremented by one. If the record
address is no longer less than the end-of-
buffer address, or if the count of logical
records is 100, the current buffer is com-
pletely processed. In that case, the end-
of-buffer switch in the DCRB is set on to
indicate that end-of-buffer processing is
necessary before the next GET can be com-
pleted, and the count of logical records is
reinitialized to zero. Whether or not this
GET emptied a buffer, the return code is
set to zero, signifying normal completion
of the GET, and control is returned to the
caller.

If, upon entry to DOMSAM, the end-of-
buffer switch is on, and if a FINISH macro
instruction was previously issued, edits
and initialization largely of the type per-
formed by MSAM Open are reguired before
MSAM Read/Write may be invoked to reprime
all the buffers. If any permanent errors
have cccurred, or if any IORCBs remain out-
standing, the task is abnormally ter-
minated; if not, a flag is set in the DCB
to indicate that this is the first GET
issued on the data group, the buffer-
priming switch is set on, and the FINISH-
just-issuved flag is turned off.

The record format is checked to be cer-
tain it is not variable. If variable, the
task is abnormally terminated since vari-
able format records are not supported for
the card reader. If not variable, the
maximum allowable record length is calcu-

Section 3: Read/Write 31

lated, and compared with the value speci-
fied by the user. If the user-specified
value is not greater than zero and less
than or egual to the computed maximum, the
task is abnormally terminated. If the
record length is acceptable, the count of
logical records within the buffer is set to
zero, and the maximum number of logical
records per buffer is computed and stored
in each DECB. The current DECB pointer is
set to point to the first DECB in the list,
the acknowledgement (ACK) switch is initia-
lized for RJE, and the routine proceeds
with buffer priming as described above.

PUT Processing: Initially, for both local
and RJE jobs, if the PUT before the current
one was not in locate mode, and if no end-
of-buffer processing is required, the fol-
lowing processing occurs.

The length of the record to be PUT is
obtained either from the DCB, or, if the
record is variable format and the PUT is in
move mode, from the length control bytes in
front of the record. If variablie, the
length is checked for validity ~-- at least
equal to the number of control bytes (0, 1,
4, or 5), but no greater than the maximum
for records of its type. An invalid length
causes abnormal termination of the task.

For local devices, a record of the
obtained length will not fit in the space
remaining in the buffer, end-of-buffer pro-
cessing must be domne before the current
record can be processed, and control is
transferred to a section for invoking MSAM
Read/Write. If the maximum size record
will fit within the buffer, and if the PUT
is in locate mode, the current record
address is set into register 1, the return
code is set to zeroc to indicate normal com-
pletion and control is returned to the
user. If the PUT is in move mode, the
record in the user-specified area whose
address was supplied in register 0 is moved
to the current buffer location.

For RJE (which operates only in locate
mode), buffering is handled differently
than for local devices. Logical records
are built into transmission control blocks
(TCBs) aligned on halfword boundaries
within the page buffer. The page buffer
and DECB work page both contain appropriate
pointers and flags (current TCB pointer,
final TCB flag, etc.). The address pointer
returned to the caller does not point to an
area in the page buffer itself, but rather
to a l44~byte area within the DECB work
page. DOMSAM then processes the record
from this location, moving it to the cur-
rent TCB in the page buffer after it has
been processed. On normal completion, the
address of the record buffer in the DECB
work page is returned to the user in
register 1.

32 Part I: Access Method for BSAM, MSAM,

Additional processing depends on whether
or not the TCB is filled, whether it is the
final TCB in the page buffer, and, if not,
whether there is sufficient space in the
buffer for another TCB of maximum (404
bytes) or minimum (278 bytes) length.
Appropriate flags are set; if an end-of-
buffer condition is reached, MSAM Read/
Write is called. If the RJE device has the
multiple record feature (MRF), seven reco-
rds may be placed in a TCB; otherwise, two.
If necessary, the 'Previous Put in Locate
Mode®' flag is set on before returning to
the user.

If for both local and RJE, the previous
PUT was in locate mode, the record subse-~
quently built in the buffer requires check-
ing. If variable format records are being
used, the length is checked for validity as
above and also for being no greater than
predicted. If the DCB indicates that this
is a form-sensitive file for a local or re-
mote printer, the control character is
tested. A machine code control character
specifying "skip to Channel 1 after print®
will trigger the ending of the current
buffer after this record. A FORTRAN (ASA)
control character specifying "skip to chan~
nel 1 before print® will result in the new
page switch being set in the associated
DECB as this is the first record in the
buffer, or will trigger processing to end
the buffer in front of this record if it is
not.

For RJE tasks, RJE transmission control
characters are inserted into each record,
and a dummy record is moved to the TCB
where this is the first PUT after OPEN orx
FINISH, or if this is the firxst record in
the buffer and it has FORTRAN (ASA) control
characters. Trailing blanks are sup-
pressed; error characters are translated
from the record; if tabbing is required,
tabs are inserted in the record; and the
FORTRAN (ASA) or machine control character
is translated tc a 2780 control character.
The processed record is then moved from the
1ss~-hbyte record buffer in the work page to
the current TCB in the page buffer and the
TCB length is adjusted. If FINISH is in
progress, an end-of-transmission TCB is
added to the buffer.

In all cases, once the logical record is
satisfactorily placed in the buffer, the
current record address is incremented by
the record length to point to the next
available space in the buffer. If variable
length records are being processed, the
total block length is also incremeented by
the record length. The count of records
within the block is incremented by one, and
if it has reached the output buffer maximum
of 200, the end-of-buffer switch in the DCB
is set on so that the next PUT processed

TAM and IOREQ

will cause cend-ot-butter procensing to
occur.
Then, if processing ot a move-mode PUT

has just been completed, control is
returned to the user with a return code of
zero indicating normal completicn. If,
however, the previous processing has com-
pleted checking of a previous lccate-mode
PUT, control is transferred back to the
beginning of the PUT rcutine, where the
end-of-buffer switch is tested before pro-
cessing the current PUT.

When a buffer must be ended &nd written
out before the next record can be pro-
cessed, the appropriate switches are set,
and control is transferred to a section for
invoking MSAM Read/Write. This section
will check to see if Read/Write has already
been invoked, and if so, will proceed to
test the appropriate DECB for completion.
If complete, control is returned immediate-
ly to the caller (MSAM FINISH).

If Reads/Write has not yet been invoked,
and if a FINISH macro instruction was not
issued just prior to this PUT, the current
record count is set into the DECE and then
reinitialized to zero. The DECE is marked
read/write requested, and MSAM Read/Write
1S given control. Upon return from Read/
Write, the pointer to the current DECB is
updated to point to the next DECBE, unless
the current DECB is the last in the list,
in which case the pointer is reset to point
to the first DECB in the list. The DCB
pointer to the current buffer page is set
to the buffer address associated with the
current DECB, and the pointer to the DECB
to be tested for completion is set. In an
RJE task, TCB flags and pointers are
initialized in the buffer and DECB work

pages.

Once MS5AM Read/Write has been invoked,
the DECB is tested for completion. If it
is not marked complete, the next record may
not be processed, and control is returned
to the user with a return code indicating
incomplete. Where incomplete because an
RJE line is disconnected, before returning
tc the caller, a return code is set to ind-
icate RJE intervention is required.

If the DECB is marked complete, a check
is made for an unrecoverable I/0 error, and
i1f one is found, a test is made to deter-
mine if the error was non-permanent and
already returned to the user. In that
case, provided no IORCBs are still out-
standing (in which case a code of incom-
plete will be returned to the caller), MSAM
Read/Write will be called to output the
records suppressed by the error, and the
DECB will be tested again for completion.
If the error was not already returned to
the user, the DECB associated with the

error is located and moved to the user's
DECH area. The address of the failing
record is computed, and control is returned
to the user with a return code indicating
unrecoverable 170 errcr. If the proper
DECB could not be found, it 1i1s assumed that
error recovery is still in progress, and
control is returned to the user with a
return cocde indicating incomplete.

If no I/0 error occurred and the finish-
in-progress flag is on, control returns to
the Finish routine. Otherwise, if no I/0
error occurred, a check is made to deter-
mine if the new buffer begins a new form-
sensitive print page. If so, and if FOR~
TRAN (ASA) control characters are being
used, the record which should start the new
page 1s still trailing after the last reco-
rd in the buffer just written and must be
moved to the beginning of the current buff-
er. If the new buffer does not begin a new
form-sensitive print page or FORTRAN (ASA)
control characters are not used, the first
available location in the buffer is set
beyond the 32 control byt=»s. 1f the reco-
rds are variable format, this address
peints to the block control bytes (LL)
which are then initialized to four, and the
first available location address is incre-
mented by four. For RJE, this address
pointer is further incremented by 12 to
allow space for the printer selection
sequence and various bisynchronous charac-
ters. The address of the first available
location is saved in the DCB as the current
record address, and control is transferred
back to the beginning of the Put routine to
process the current PUT.

If, upon entry to the Put routine, a
FINISH macro instruction has just been
issued and end-of-buffer processing is
indicated, the following edits and initia-
lization, largely of the type performed by
MSAM COpen, are required before the Put can
be processed.

If any permanent 1/0 errors have
occurred, or if any IORCBs remain cutstand-
ing, the task is abnormally terminated. if
none, a switch is set in the DCB to indic-
ate that this is the first PUT on this data
group, and the various processing switches
in the DCB are reset. All DECBs are rein-
itialized, the pointer to the current DECE
is set to point to the first DECB in the
list, and the current buffer page address
15 set from the current DECB. The record
format is checked to be certain it is eith-
er fixed or variable, and if it is neither,
the task is abnormally terminated. The
current record address is computed as
described above. In an RJE task, TCB
pointers and flags are reinitialized and
maximum and minimum TCEB size is set.
Abnormal termination occurs if the device
is neither a card punch nor a printer, or

Section 3: Read/Write 33

if the logical record length specified in
the DCB is invalid. Otherwise, conrol is
transferred to the beginning of the PUT
routine to process the first record of the
new data group.

MSAM ReadswWrite Routine (CZCMF)

The MSAM Read/Write routine builds an
IORCB, which contains a channel program
(CCWs) to process an entire buffer page of
records. It invokes I0S by the IOCAL SVC
to perform the actual input or cutput com-
wmands. (See Chart BC.)

tribut Privileged,
reentrant, nonrecursive.

read-only, public,
Entry Point: CZICHMFl -- Entry from DOMSAM
(GET or PUT) by type-1 or type-2 linkage.

Input: Register 1 contains the address of
the DECB.

pData References:
CHAIOR, CHAISA.

CHADEC, CHADCB, CHADEB,

Modules Called:
DIR (CZC3D} -- Delete interruption routine.

10CAL (CEBAO) -- Initial supervisor proces-
sing of an IORCB.

SYSER {(CEAIS) -~ System €IXr0r processor.

reset (CEABRH) -- Reset device suppression
flag routine.

Exits:

Error -- Link to ABEND with condition code
1 and appropriate error message.

Operation: When Read/Write is entered, the
DCE address, the DEB address, and the
address of the buffer page are obtained
from the DECB. The location where the
IORCB is to be built is obtained from the
tirst system control word of the buffer
page. Since this buffer page may be in
class A {[user read-write) virtual storage,
a series of checks are made to verify that
the IORCE address is still valid and has
not been changed by the user. An incorrect
TORCB address causes an ABEND.

1f the DECB passed to Read/Write indi-
cates complete with error rather than Read/
Write request, any outstanding asynchronous
routine is deleted, the IORCB abnormally
terminated is reissued immediately at a
point beyond the command that failed, and
any subsequent IORCBsS whose DECBs are
marked intercepted are reissued. Control
then returns to the caller.

34 Part 1:

If the DECB passed to Read/Write indi-
cates a READ/WRITE request, the IORCB is
pbuilt and executed. The location of the
buffer page is placed in the single page
list entry. All CCWs created will
reference this page list for the address of
the buffer page. Pointers, counters, and
the displacemert are initialized. Each CCW
contains a displacemnt field which corres-
ponds to the displacement, in its buffer
page, of the data to which this CCW refers.
If the CCW does not reference data (for
example, skip immediate or NOP), the dis-
placement is the same as for the adjacent
CCW. The device type 1s tested, and pro-
cessing diverges for local or remcte
devices, and for input or output.

For local card readers, the data mode
{EBCDIC or column binary) the stacker bin,
and the record length are determined from
the DCB. Two command-chained CCWs are
generated for each record to be read; a
read CCW followed by a feed and select
stackexr CCW.

After the CCWs have been constructed for
a buffer full of records {(count is given in
+he DECB), a NOP without command chaining
rerminates the CCW list. The length of the
CcCW list and the total length of the IORCB
are computed and set in the fixed area of
the IORCB.

If this is the first record of a data
group, or on initial priming after an
error, the device is reset for I/C and
exceptional condition flags are cleared.
(If not the first record, and an exception~
al condition has been detected on the
device, the DECE is marked “posting reis-
sue® if error recovery is in progress, Or,
if not in progress, it is marked *inter-
cepted®, and control returns to the
caller.)

Task interruptions are inhibited while
the count of IORCBs outstanding is incre-
mented by 1. Then this IORCB is issued to
10S by executing its IOCAL SVC. control is
veturned to the calling program.

For remote card readers, an IORCB is
built consisting of alternating read and
write CCWs. Each read CCW brings in a 168-
byte transmission containing two card reco-
rds. With a remote card reader containing
the multiple record feature, each read CCW
will bring in four card records. Following
each read CCW a two-byte write CCW is built
in the IORCB to transmit to the device ack~-
nowledgement of the previocus read. The
write CCW transmits bisynchronous control
characters (ACKO or ACK1) which must
alternate for successful transmission. For
purposes of error recovery, the first CCW
built in the IORCB will be a one-byte write
containing a negative acknowledgement

Access Method for BSAM, MSAM, TAM and IOREQ

character (NAK). This will be followed by
a NOP command, then an initial write CCW
with an acknowledgement character. The
start CCW will follow and be the first of
the alternating read and write CCWs built
in the IORCB.

A page buffer in an RJE GET oprration
may contuain up to 24 transmissions (48 card
records). When the maximum number of CCWs
have been reached {or there are no more
records), a NOP command will terminate the
command chain. The lengths of the CCW list
and of the IORCB are computed and entered
in the fixed area of the IORCB.

If no errors ore outstanding, acknowled-
gement responses for the write CCWs are
synchronized, task interruptions are per-
mitted if necessary, and the IORCB is
executed via the IOCAL SVC. Control is
returned to the caller.

For card punches and local or remote
printers both FORTRAN (ASA) and M control
characters are supported. The record
length for fixed length records is deter-
mined from the DCB. Variable length reco-
rds specify their own length. The length
field of a variable length record is never
printed or punched nor is any control
character printed or punched. Control
bytes are examined in the buffer.

If the device is a card punch, one
punch, feed, and select stacker CCW will be
generated for each record tc be punched.

If M control characters are being used the
control character itself is used as the
command code. It must be a write command,
otherwise ABEND terminates the task. If
FORTRAN (ASA) control characters are being
used, the command code is determined by
combining the DCB mode specification with
the appropriate extended ASA stacker speci-
fication. If no control characters are in
use, the mode and stacker specifications
are obtained from the DCB and combined to
create the command code. If COMBINE is
specified, the stacker must be RP3, other-
wise ABEND terminates the task.

If the device is a local printer and if
universal character set (UCS) printing is
to be done a reset block data check command
is the first command of a data group. Pre-
ceding the first print command of a data
group is a skip immediate to channel 1 CCW.
1f neither FORTRAN nor M control characters
are in use, each CCW created to print a
iine will be a write and space after writ-
ing. The number of lines to space is
determined from the DCB. If M control
characters are in use each control charact-
er will be used as the command code in the
one CCW generated for each record. It must
be a write command, otherwise ABEND will
terminate the task. Since FORTRAN control

characters specify skipping or spacing
before printing as opposed to the command
codes which specify only skipping and spac-
ing alone, or skipping or spacing after
printing, the control action is associated
with the previous write, or requested «lons
if there 15 no previous write. Thus, if
FORTRAN control characters are in use, the
first record will cause two CCWs to be con-
structed; one control CCW to skip or space
before printing and one write CCW. FEach
subseguent record will cause the generatior
of one CCW, whose write command code is
also determined by the next FORTRAN controi
character. The CCW for the last record to
be printed is a print and no space command.
When the last punch or print CCW has been
built, the 1list is terminated with a NOP,
and the line of processing for the card
reader is rejoined.

If the device is a remote printer, the
channel program will consist of alternatin
write and read CCWs. Each write CCAN will
transmit a transmission control blo-k (TCH.
of data containing up to 7 records 1f the
device has the multiple record feat ire and
2 recoxds if it does not. Each real cow
will read in bisynchronous acknowle-igement
bytes for determining successful trinsmiz-
sion {alternating ACKO and ACK1l). 1If this
is the first PUT after an OPEN or FINISH
macro instruction, or if the IORCB is beins
reissued for purposes of error reccvery,
the initial CCWs will consist of writes an:
reads of bisynchronous bytes to ascertain
the state of the device and get the acknow
ledgements (ACKO and ACK1) in synchroniza-
tion and a selection record to sele¢ct the
printer. In addition, if the device has
the tabbing feature, CCWs will be ¢dded to
write the tabbing record, which will set
the tabs on the printer. {The 144-byte
tabbing record is built by Read/Write in
the IORCB preceding the page list pointer;
it is built only once for each IORCB.} The
writesread CCW pairs will follow urtil an
end-of-transmission (EOT} TCB is reco-
gnized. Then a write CCW is built for the
ECOT TCB and a NOP is added to terminate
command chaining.

TAM Read/Write Routine {[CZCYM)

During the execution of a systen pro-
gram, where the programmer had oricinally
requested a read or write from or to a ter-
minal, a call is generated that lirks to
TAM Read/Write.

TAM Read/Write functions are accomp-
lished by using the control blocks and
buffer area allocated during TAM Open, anc
by using the tables internal to TAM Read/
Write. The terminal-computer communication
is accomplished through a buffer area under
control of the channel command words
(CCWs), loucated in the IORCB.

Section 3: Read/Write 19

TAM Read/Write also issues control func-
tions (orders) to the transmission control
unit (2702). (see Chart BD.)

gttributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Points:
ToeYMT -- Type-1 linkage.

systems routine.

Entered from

CiCYM2 -- Type-1 linkage. Entered from TAM
Posting.
Input: Register 1 contains the address of

the DECEB.

CHADEC, CHADCB, CHADEB,
CHASDA.

pata Reference:
THAIOR, CHATOS,

Modules Called:

ABEND (CZACP) --
CKCLS {CEAQH4) --
IOCAL (CEAAO) --
TSEND (CEAPY9) --

Abnormal task termination.
Check protection class.
1/0 call.

Time slice end.

Exits:

Normal -- Return to calling routine.

Error —— ABEND macro instruction.

Operation: TAM Read/Write initially saves
the general registers. The general regis-
ters are then loaded with pointers to
referenced control blocks, starting with
the data event control block (DECB):

e

|
|
'*l oS SDAT |

including
{ORCSB

The DECB pointer to the DCB is included
as one of the Read/Write macro instruction
operands. The rest of the pointers are
described in TAM Open.

An initial test is made to see if a non-
privileged user has called TAM Read/Write.
An improper linkage will immediately ABEND
the task.

Any time the command system is used, it
causes TAM Read/Write to be invoked py way
of the Gate routine. Nonprivileged pro-
grams should only use those GATE macro
instructions which link to the Gate rou-
+ine. The system program Gate routine then
iinks to TAM Read/Write. A nonprivileged
program attempting to directly call TAM
Read /Write is an abnormal condition that
causes a branch to ABEND. Two areas of
error testing are then made to assure that
system parameters are properly set. If
either area is not satisified, a return to
the user occurs. If both areas are
correct, TAM Read/Write continues.

36 Part I:

The tirut area tested assures that in
the SDAT the number of active ICRCBs 1is

zero. No busy DECB exists for this termin-
al. (A busy DECBH occurs after a TAM REAL/
WRITE is issued and ends during tne ccrres-

ponding TAN posting.) If the number of
act ive IORCBs is zero, the IQRCH active
count field in the TAM Read/Write PS3ECT for

this terninal -s set to 1 {for this TAM
read/Write entry) and the second aroa 1s
tested. 1f the number of active IURCBs 1

not zero, then the in-use hit in the flag
field of the DECR is set and 4 return 1is
made to the user.

The second area tested assures that 1n
the DECB, the type option code specified 1is
within the range of all defined types for
all terminal types, ani that the type
option code specified is valid for the
actual terminal type.

1f these conditions are met, data from
referenced areas, including DEZ3 informa-
tion, are merged in TOS (terminal access
operational status table) to reduce paging
time later. The type option is then
decoded.

1t either of these conditions 15 not
met, no further testing OCCUrs. Instead,
an error code is moved into the ECE of the
DECB, the user error £lag is set in the
DECE and the SYNAD request is set in the
DECB. A return to the user OCCUrs.

The type option code in the DECB 1is then
decoded to see if it is a control function
{order). If it is a control function:

e The corresponding CCW genexrator
generates one appropriate CCW in tne
TOS build area.

e The CCW is moved from the TOS build
area into the IORCB CCW list area.

e The IORCE fixed area is comrpleted.

e »n IOCAL is issued, which links to IO0S
for this IORCB to be executed. When
the supervisor returns control, TAM
Read/Write restores the regicters and
returns to its user.

Accessing the Channel Programn Generatcr:
If this is not a control function, TAM
Reads/Write begins processing to puild a
list appropriate to the cption requested
for the particular terminal.

CCW

TAM Read/Write begins processing for
this requested terminal computer I/Q opera-
tion by first finding the proper channel
program generator (CPG). To accomplish
this a program search of internal tables
within TAM Read/Write {illustrated in
Figure 6) 1is required. These tables are:

Access Method for BSAM, MSAM, TaM and IOREQ

uTtr

Terminal
Type TLT ADD. j
Model . T
Code TCP
— TCP ADD. >
TCIT
Type cPiT
Option . CPG DISP ___,,&N_____“
CPG - TID R}
CCWG
CCWG
CCWG
CPG - TIN ®) B |
CCWG
CCWG
CCWG
CPG - TIA (W}
CCWG
CCWG
CCwWG

Figure 6. TAM Read/Write:

e The unit type table (UTT)
e A terminal library table (TLT)
s A terminal channel program {(TCP)

The procedure to find this CPG in TAM
Read/Write requires as input:

e Terminal information loaded in the DEB
from the SDAT during TAM Open contain-
ing terminal type and model code (refer
to Table 8}).

« Type option code specified in the DECB
(refer to Table 9).

The sequence (refer to Figure 6} in
finding this CPG is as follows:

1. The code for the mechanism for joining
the terminal to the system {(that is, a

CPG location Sequence

2702 control unit connection or a
direct multiplex connection) deter-
mines the displacement in the UTT to
obtain the address of the TLT (Takise
10).

The model code {that is, 1050 or a
2741) determines where in the TLT
{refer to Table 11) the address of the
TCP can be located. This address is
+hen examined.

a. If the entry in the TCP is zero,
it indicates that the library does
not exist.

b. If the TCP entry is an address,
TAM Read/Write then calculates a
displacement from the TCP, which
is used to get to the appropriate
CCWG.

Section 3: Read/Write 37

Table 8. TAM Read/Write:

mation from SDAT

Terminal Intor-

r————-= R s b L 1
|Model | Line | Terminal | SAD |
| Code | Type | Ty pe jOrder |
e fom e oo mmmmmam yomm—ee S 3
H i {High-Order{ Low-Order| |
{Byte 1liByte 2| Byte 3 | Byte 3 |Byte 4}
SRS SRS S S b

iByte 1 -- represents a model code for
jterminal units {1050, 2741, 35, 1052)

i
|Byte 2 -- represents a line type for
|connection (dial line or dedicated line)

{

{

i

f

|

|

|
|High~Order Byte 3 -- represents a {
jterminal control unit type (IBM terminal |
jcontrol unit; type I, type II, telegraph |
jterminal control unit; type I, type II, |
jWworld Trade terminal controcl unit) |
; ;
i i
| Low-Order Byte 3 ~- represents a terminall
jchannel connection type (2702, i
{Multiplexer) |
[|
|Byte 4 -- represents a SAD order (0, 1, |
2, B : |
1

3. In tne TCP (Table 12}, TAM Read/Write
locates the proper CPG from the type
option code. The TCP is divided into
three main fields which are:

e« Terminal control information table
{(TCIT)

e Channel program index table (CPIT)
s Channel program generator (CPG)

The terminal control information table
(TCIT) in the TCP contains data on addres-
sing, polling, EOL sequence characters,
etc., (Table 13).

The channel program index table (CPIT)
{refer to Table 12) determines from the
Type option code (stripped of the repeat
bit if any) where the corresponding CPG
displacement is.

The CPG is obtained from the displace-
ment in the CPIT. This displacement value
is added to the TCP address to generate the
address of the CPG (Figure 6).

Makeup and processing of the Channel
rProgram Generator: A CPG contains channel
command word generators (CCWG) (refer to
Table 14).

A breakdown of each of the CCWG sections
is shown in Table 15.

To process the CPG, each sequence cycle

begins by sequentially testing the CCWG

38 Part I: Access Method for BSAM, MSAM,

TaM

buftexr allocation tiag bits <hown in Table
16. For each flag that is on, TAM Read/
Write branches to the indicated associated
routine to perform the indicated required
function. These functions are used in
generating a CCW or updating information
needed to construct an IORCB. Overall
these functions include allocating space in
the IORCB buffer area and moving into this
pbuffer:

¢ Begin and/or end control characters

e Space for response characters

e Output data

* Data translation of ocutput data
e Space allocation of output data

The last buffer allocation flag is an
end flag. If it is not set, the developed
CCW is then moved (see note below) into the
build area of TOS where the command code
and flag fields are obtained from the CCWG
area and the count and relative displace-
ment address fields are obtained from regi-
sters. The logical function code is moved
into the logical function area of TOS to be
used later by TAM Posting. The next
sequence cycle in this CPG then repeats, by
sequentially testing the next CCWG buffer
allocation flags.

If the last buffer allocation flag is
set, TAM Read/Write prepares to terminate.

Note: A developed CCW is not moved into
the build area of TOS and the logical func-
tion byte code is not moved into its respe-
ctive location if the following conditions
are present in the CCWG:

e Command code field is zero

e End allocation flag is set

® Inhibit allocation flag is set

TAM Read/Write then prepares to termin-
ate since all the allocation flags in all
the CCWGS in the CPG have been tested. To
accomplish this termination:

e The message in the buffer area of the
IORCB is translated to the terminal
character set code, for all write
operations.

s The CCW list is moved from the TOS
build area into the IORCB CCW list
area.

¢ The IORCB fixed area is completed.

and IOREQ

T
.
i

{

s e s oo e S e o O et i T i B e i e g o e S

e T i o it o s W ey

able

9. TAM Read/Write: Type Option {Hex and Mnemonic) Codes and Description
(Part 1 of 2)

Option|Mnemonic|

Code
| (Hex)

03

04

05

06

07

08

09

oA

OB

0E

OF

64

65

!
t
|
-t B - S— ———

1
| option | '!
{ Code | bescription |
S e
} TID |Read Initial with Dial: This option indicates that an automatic dial |
i |connection is to be made with the terminal. The dialing digits are i
; iloca;ed in the terminal entry list (DFTRMENT). If the terminal type |
i |requires polling, the necessary polling seguence characters are |
| |generated. {
| | |
| !
| |
§ !
I
| |
! !

)
]
x

|Read initial with dialing/repeat.

H
=
4

|Read Initial: It assumes that the line connection has been previously

|made. If the terminal type requires polling, the necessary polling

|sequence characters are generated.

! |

i TNR {Read initial/rep=at.

|

TCN jRead Continue: This option is specified when polling is not required.
|It may be used for terminals previously polled and in a transmit state.

|
|
i |
|
|
|

TCR |Read continues/repeat.
|

TID {Write Initial with Dial: This option indicates that an automatic dial

| connection is to be made with the terminal. The dialing digits are
{located in the terminal entry list (DFTRMENT). If the terminal type

| requires addressing, the necessary addressing sequence characters are
|generated.

|

TDR |Write initial with dialing/repeat.

|
|
|
|
|
|
|
| |made. If the terminal type requires addressing, the necessary
| jaddressing sequence characters are generated.
| |

| TNR |Write initial/repeat.

{ |

| |Write with Response: 1t assumes that the line connection has been

| | previously made. If the terminal type regquires polling and addressing,
| |the necessary sequence characters are generated. This option provides
| |the ability to output a message to a terminal and receive the

| jterminal's next input record or line. The maximum output message size
| {is 1 to 32,767 characters. The maximum input message is one logical

3
o)
>

|record or line as specified by terminal type.

{
|
|
|
|
{
|
|
|
|
|
|
|
|

TIN {Write Initial: It assumes that the line connection has been previously|
|
]
|
i
|
|
|
|
|
i
|
| |
| |
| TAR jWrite with response/repeat. |
| { |
| |The above types witn the repeat option will automatically retransmit or|
| | request retransmission of messages in error if the terminal is equipped|
| jwith error correction facilities. A predetermined number of retries asj
1 |specified by terminal type will be attempted for each message
| |transmitted in error. The posting of uncorrectable errors will include
| |appropriate error informatior.
|
|

AUTOWRAP|On accepting this order, the Transmission Control Unit wraps the output
| jof the addressed line to the input of line 0. The command within the

| |channel operates as a write.
|
|

DISABLE |On accepting this control order, the Transmission Control Unit resets
|the enable latch within the line adapter of the addressed
| communications line. No data transfer occurs.

& .

ENBLASYN|{On accepting this control order, the Transmission Control Unit sets the
jenable latch within the line adapter of the addressed communication
{line. No data transfer occurs.

e et o s it s i, e e i G S S S

Section 3: Read.‘Write 39

Table 9. TAM Read/Write: Type Option (Hex and Mnemonic) Codes and Description

(Part
r—————= b Sutuiuiai
jOption|Mnemonic
jCode | Option
| (Hex) | Code

ENBLSYN

69

6B
6C

I
l
!
|
|
!
|
|
{
|
|
!
i
i
|
!
|
[
]
!
!
!
!
I
|
!
i
|
i
|
!
|
i
|
|
!
|
| 6A
|

|

|

L.

SADTHREE |On accepting this control order, the Transmission Control Unit sets the

2 of 2)

P e e e e e e e e e e e e e e e e e . s e s o e . e . e o . o e o . . i S . e e . . . ot 1

| I
| |

} Description |

}On accepting this control order, the Transmission Control Unit sets the|
{enable latch within the line adapter of the addressed communication |
{line. No data transfer occurs. |
! |
jThis order may be used in a contention type communications system to |
{indicate to the processor when data is arriving. When a valid start |
|bit is detected by a line instructed to prepare, a character is strobed|
joff. If at stop time the line is at mark, the prepare command is i
jterminated with channel end and device end status. The character |
jassembled is not transferred tc the multiplexor channel. If the line |
{is at space, a timeout 1is started. 1f the line returns to mark before |
| the timeout is complete, the prepare command is terminated with channelj
lend and device end. The prepare command is terminated when the timeout |
loccurs, indicating an open iine condition with channel end, device end, |
}and unit check status and intervention required in the sense byte. {
I !
|On accepting this control order, the Transmission Control Unit sets thej
jterminal control (TC) field within the addressed ICW to one, so that |
Jthe terminal control with the internal address equal to one is i
lassociated with the addressed communications line. No data transfer {
joccurs. |
| !
}On accepting this control order, the Transmission Control Unit sets thej
|7C field within the addressed LCW to two, so that the terminal control |
[with the internal address egqual to two is associated with the addressed]
jcommunications line. No data transfer occurs. |

jTC field within the addressed ILCW to three, so that the terminal
jcontrol with the internal address equal to three 1is associated with the
jaddressed communications line. No data transfer occurs.

]

jOn acceptance, the Transmission Control Unit will set the TC field
jwithin the addressed LCW to zero so that the terminal control with the
|internal address egual to zero is associated with the addressed
|communication line. No data transfer occurs.

I

jOn accepting this order, the addressed line transmits a continuous
|space signal. Bytes transferred from the channel to the addressed unit|
jmust be all zeros. To provide control over the length of space signal,|
la byte count must be sepecified by the program. |

— [o e e e e e e — —— - e d

Table 10. TAM Read/Write: Unit Type Table Table 11. TAM Read/Write: Terminal
Format Library Table Format f{(for 2702

TLT)

12702 TERMINAL LIBRARY TABLE (TLT) ADDRE SS
=27o1 TLT ADDRESS

iHULTIPLEXER TLT ADDRESS

;SELECTOR TLT ADDRESS

|
{2701 OR SELECTOR TLT ADDRESS
b

T
11050 TERMINAL CHANNEL PROGRAM (TCP)
| ADDRESS

{2741 TCP ADDRESS
| 35 TCP ADDRESS
1

b cm o e s i soed

¥
|Note: Unit Type Table (UTT) is specified

|in READ/WRITE.

b——«.—.&.m_...—-w”—-..«m——»-l

4Q Part I: Access Method for BSAM, MSAM, TAM and IOREQ

Table 12. TAM Read/Write: Terminal Con-

trol Program Format

TERMINAL CONTROL INFORMATION TABLE |

i
|
oo e !
|
{ CHANNEL PROGRAM INDEX TABLE (CPIT) |
| !
| CPG DISPLACEMENT FOR TID* (R) |
|]
| CPG DISPLACEMENT FOR TIN#* (R) |
| |
| CPG DISPLACEMENT FOR TCN#® (R} |
| |
i CPG DISPLACEMENT FOR TID$* (W) |
| |
i CPG DISPLACEMENT FOR TIN#* (W) |
| |
i CPG DISPLACEMENT FOR TCN#* (W) |
| !
| CPG DISPLACEMENT FCR TIA®* (W) |
| |
e 4
|
| CHANNEL PROGRAM GENERATOR for TID* (R) |
i {
1 CPG FOR TIN® (R) |
| !
{ CPG FOR TCN#* (R) 1
i |
] CPG FOR TID* (W) |
| l
] CPG FOR TIN* (W) i
| |
i CPG FOR TCN#* (W)
] |
i CPG FOR TIA* (W)]
{ !
R 3
{#All CPG displacements need not be i
| required for the terminal type. These |
| displacement fields are zeroced and the |
| corresponding CPG fields do not exist. |
G - —————— _— - 3

e An IOCAL is issued, which links to the
supervisor to initiate the terminal
computer communication, under control
of the IORCB CCW list and through the
IORCB buffer area.

When the supervisor returns control, TAM
Read/Write restores the registers and
issues a return to the user, if the posting
flag is not on.

If the IORCRB buffer data area was not
large enough to complete the TAM Reads/Write
operation, it is necessary for continuous
IORCBs to be developed for one DECB.
Although the initial TAM READ/WRITE was
from the user, subsequent IORCB entries
would be from TAM Posting until the opera-
tion is complete. These TAM Posting calls

Table 13. TAM Read/Write: Selected Ter-
minal Contrcl Information Table
Entries

e e e 1

{Maximum Option Amount; Begin Control |
|{Character Count; Begin Control Character. |
! |
|[Maximum Cnaracter SGet Amount; Polling |
|Character Count; Polling Characters. {
{ !
{Prefix Count; End Control Character i
|Count; End Control Characters. |
! |
|[Read End Of Line Sequence Count; Read End|
|0f Line Sequence Character. |
! |
|Maximum Number of CCW; Addressing i
|Character Count; Addressing Characters. |
| |
|TAM READ Data Set Length; Control |
{Character Table Address. i
| !
|Write Error; Read Error; Read Error |
|Positive Response. {
! |
|Control Count; Positive Response; i
|Characters. !
! {
|Maximum Count Of Line Control Characters;|
|Read Erxror Negative Response; Read Exrror |
|Negative Response Characters.

|

| TAM WRITE Data Set Length.
!
| Polling Response;
{Count;
1
|Repeat Option; End Of Line Sequence
|Count; End of Line Seguence Characters
| (20 Characters Maximum).

|
{maximum Buffer & CCW Size; End of Card

!
|

Addressing Response i
§

i

i

|

{

!

!

|Sequence Count; End of Card Sequence {
!

[

i

|

|

{

H

i

H

i

i

Addressing Response Characters.

[Charccters.
|

|Terminal Character Set Address; Translate
jand Test Function Table Address. i
|
|Continue Count; Text Control Character
|Count; Text Control Characters.

{
|Failure Count; End of Message Sequence
|Count; End of Mcssage Sequence Characters|
| (20 Characters Maximum). {
[—— _

to this program cause a return to TAM Post-
ing under direction of the posting entry
flag in TOS.

ILOREQ Routine (CZCSB)

puring the execution of a user's pro-
gram, where the programmer had originally
issued an IOREQ macro instruction to gener-
ate an I/0 operation on a device, & call is

Section 3: Read/Write 41

Table 14. TAM Read/Write: Channel Command
Wword Generator Section
o e 1
| Name i Comments]
fomm e O !

jcommand Code |Command code for a particu-
{Field |lar operation. This tyte
jis moved into the command
jcode field of a CCW list
{located in the build area
jof TOS.

Unused Field |This field is reserved for
| future expansion.

[
|Displacement of ending
jpoint to CCWG when
jcompleting a CCW orxr a
fregeneration of a
|particular command

i

{

|

|

|

|

|

|

%
Displacement |
]
|
§
|generator when multiple |
|
i
|
i
i
i
|
i
|
!
|
|
!
i
|

Field

| ICRCBs are required.
|
|Flag Field |Flags required for a parti-
|Logical Func-jcular command generatox.
jtion Code
{Field

|Required for TAM Posting
|routine. The byte is moved
| |into the logical function

| jarea of TOS.
|

|Buffer Allo- |Kequired in building the

jcation Flag |CCW. Allows additional
|[Field |routines to pe called to

| jfill in the buffer area of

| {the IORCB when a CCWG is

| | processed.

I e e 1

generated that links to JOREQ. A system
routine may also directly call IOREQ at a
second entry point.

IOREQ uses control blocks and buffer
areas that are allocated during IOR OPEN to
puild channel command words in the IORCB.
(See Chart BE.)

resident in virtual
read-only,

Bttributes:
storage, closed,
privileged.

Reentrant,
nonrecursive,

Entries:
CZCSB1 -- Type-2 linkage. Entered from
user IOREQ macro instruction.

LZCSE2 -- Type-1 linkage. Entered call by
sy “tem.
Input: Register 1 contains the address of

a two-word parameter list:

Wword 1

Address of the DECB.

word 2 --
by the
of DCB

Address of main storage furnished
privileged user for IOREQ portion
and for IORCB.

42 Part I: Access Method for BSAM, MSAM,

Table 15. TAM Read/Write: Channel Command

Word Generator Format

tCommand Code 1Sev Table 9.

|

|Displacement |Completed by I0S5.

|
{pata chaining,
{chaining,

|F command

| suppress length

| jindication, skip, proaram

i |control interruption.

| |

|Logical Func-|pial end control, data out,

jtion Coae {data in, read error

| {response, write €rror

1 {respons =, adaressing,

| lvelling, aldress response,

| {polling response, control,

| Jend control, errcr TIC,

| |negative response, wWrite

| lerror message.

| |

|Buffer Allo- |See Table 1lé6.

jcation Flag |
i

b e o e e A o s i o e S S e S] e A s e e e

The second parameter word is used only
for entry at CZCSB2.

Data Reference:
CHAISA, CHAIOR.

CHADEC, CHADCB, CHADEB,

Modules Called:
CKCLS (CEAQUW) -- Check protection class.

IOCAL (CEAAQ) -- XI/0 call.
Exits:
Normal -- Return to calling routine.

Error -- ABEND macro instruction.

Operation: A user originally issuing an
IOREQ macro instruction enters IOREQ to
edit the VCCW list. IOREQ initially saves
the general registers and then loads them
with pointers to referenced control blocks.
This starts with the DECB.

0T8 DEB

The DECB pointer to the DCB is included as
one of the IOREQ macro instruction
operands, and the other pointers are
described in IOR OPEN. IOREQ then performs
the following functions:

e Validates user parameters.

e Checks that the DCB identification is
valid DCBID=%%*%.

TAM and IOREQ

Table 16. TAM Read/Write: Dpuffer Allocation Flag Bits of CCwWG

-
'

- Data to be transmittea from terminal to CPU. A buffer arca is r-served in
i the ChAIOK to accept the message. The message 13 not tested for function

[Suintuind Sl e s 1
fortsi Name { Comments |
R e o e e e i
{ 48 jUnuued [keserved for future expansion. |
| ! |
i 49 jmroegan Control {10 ~ No control characrers reguired. ,l
i { il - Began control characters required betore polling ot addressing 1n mnitiated, |
| i i Cnaracters are obtained from the TCT and movei to butter area in CHATCR, |
i | }
{ %0 [Ent Control 10 - Ho control cvharacters reguireld. :
i { {1 - End control characters required after pollinj or addressing hau been |
i { | initiated. Characters are obtained from the TCI and moved to puffer area inj
| | t CrAIUR. |
! i | |
| 51 |Text Control 10 - No cortral characters required. |
1 | [l = Text contr i cheracters reguired after end control characters. Characrers |
| | | are obit.o, i trem tne TCI and noved to buffer area in the CHAIUR. |
i | i
i 52 {Data Out {0 - No aeta transtitted to terminal. l;
i 11 - Data to be woved from user area f{(address in CAADECO) to butter arfa in |
i i CHAIOR (data is tested tor function control chardcters). Function Control [
i { Cnaracters and related codes which are not recognized by different terminal |
i | typen are Jdeleted fromow age when moved to the bufter ares 1 CHATOR, |
i H Translating dats to terminal character set code 1o done at complotion ot |
i { CHATOK, |
t |
%3 jlate In i NO ‘iata tranimitted to CPU.
i {
i H
|

| control characters. Translating data to EBCDIC is accomplished .n TAMN
i POSTING routine.

i
! |

4 |Read EXrogr punitiveiU - no kead Error Positive kesponse characters required.
i i1 - Read brror Positive Response characters reguired after transmissicon of data
to CPU. Characters are obtained from the TCT and moved to bufter area of
the CHAIOR.

¢
|
!
i

|

|

|

i

|

]

1

|

|

: |

t |

! !

55 jRead Error liegative}l? - No krad Error Negative response characters required. |
{ Response {1 - Read Error Negative Response characters required after transmission of data |

i | to CPU. Characters are obtained from the TCI and moved to buffer ared of !

i { the CHAIOR. |

! t i

56 |Arite Error |0 - No Write crror control characters required. |
| Response |1 - Write krror control characters are transmitted by the terminal control unit.|

| | The count 1s obtained from the TCI and space allocated in the buffer area off

i | the CHAIOR. 1

t | |

57 {Addrxessing 10 - No addressing required for a terminal. |
i {1 - Addressinj required, obtain addressing rnaracters from the terminal entry }

i { list (DFTRMENT-address located in DECB). If not present, addressing |

i t characters are obtained trom the TCI. Characters are placed into the buffer|

{ | area of the CHAIOR. |

i | |

9% j¥nlling {0 - No polling required for a terminal. |
{ |1 - Polling required, obtain addressing characters from the terminal entry last |

} | (DFTRMENT-address location in DECB). It not present, polling characters are|

| | ~ptained from the TCIB. Characters are placed in the bufter area of the |

i { THAIOK. |

| | |

59 {Addressing Responsej0 - Vo addressing response required. |
i {1 - Addressing required, obtain characters from the TCIB. Characters are moved |

i 1 into the buffer area of the CHAICOR. {

| i I

6C |Polling Response {0 -~ No polling response required. |
| |1 - Polling required, obtain characters from the TCIB. Characters are moved i

{ i into the puffer area of the CHAIOR. i

1 |

61 2Irmib1t {C - Current cnannel command werd will be developed and placed into the puild |
| | area o: the (ot 135, |

{ {1 - Inhipit curren® -hannel command word from being developed. i

I | !

62 {Continue {0 - Follow normal : -Luence of CCWG operation. t
| }1 - ~urmal sequence of CCWG is changed. It permits return to a previcusly |

| i cxecuted CCWG. |

| { |

631 {End {0 - Continue normal sequence of CCWG. |
i {1 - Terminates the CCWG list. |
e e ——— e e e e e e e et —— e e 2 e o o ot . S S i ko e o S e o S L S o o o e 1

Section 3: Fead/Write 43

e Checks that the DEB identification is
valid DEBID=# (.

e Stores address of DECB in DCBTMP (work
area)l.

e Clears the fixed portion of the IORCB.

e Clears the outstanding IOREQ rejuests
{DECB Queue) if the DEB flag (DEBNFT7)
is set. This indicates that the pre-
vious CHECK macro instruction caused an
exit to SYNAD. Therefore while execut-
ing the previous SYNAD routine the user
must reissue desired purged DECSBs.

Note: If either the DCB or DEB identifica-
tion is not valid, an exit to ABEND occurs.

Pre~edit checking now occurs and, if
satisfactory, IOREQ begins the edit phase.
This pre-edit checking includes the
following:

1. Check if the IORCB can be executed.
1f a previous operation set the DEB
flag (DEBNF1) to indicate an inter-
cepted error, the IORCB is marked
intercepted and a return occurs. The
ICRCB cannot be executed at this time,
but the DECB is entered in the queue
and the IOREQ should be reissued by
the user.

2. Check if the DECB is valid. A return
occurs if the DECB has any of the fol-
lowing invalid conditions:

e The DECB is in the wait state (DECB
not ready).

¢ The DECB is in use (DECB active).

¢ The queue of pointers in the DEB is
full (DEBNPC is exceeded).

IOREC then begins the edit phase. This
edit phase consists of a preliminary pass
through the VCCW list pointed to by the
IOREQ macro instruction to determine the
validity of the VCCWs. 1In addition, the
amount of space required for the buffer or
page list entrxies and the VCCW list is
determined.

If buffering is requested by the IOREQ
macro instruction, the following pointers
and counters are also initialized:

e A pointer to the lowest address of a
read request VCCW, used to determine
the low-order buffer address needed for
the read request.

¢ A pointer to the highest address of a
read reguest VCCW, used to determine
the high-order buffer address needed
for the read request.

44 Part I:

e A counter containing the amount of
puffer space needed in the IORCR tor
read requests. For these read
reguests, the amount ot butter space 1w
the contiguous difference between the
high and low-address buffer pointers.

Tests are 1iso made in this edit phase
to assure that chaining rules are not vio-
lated. Chaining rules are listed in IOREQ:
VCCW section of Assembler User Macro
Instructions, GC28-2004. If any rules are
violated, a return to the user occurs. The
user's program has been checked for validi-
ty within IOREQ but a system program that
calls IOREQ directly, enters at this second
point and therefore is assumed to have the
VCCW list built correctly without the need
of editing. However, on IOREQ recognizing
a system program entrance, it branches to
the previous phase only to set up buffer
addresses and values or to build page list
entries. During this build phase a dif-
ferent sequence is followed depending on
whether or not buffering is specified.

If buffering is requested:

e The start address of the IORCB buffer
is set.

e The buffer total length is set.
e The start of the CCW list is set.

The CCW entries are generated in the
IORCB using the VCCW list as input, and
space is allocated in the buffer area. 1In
addition, in write and control requests,
data specified in the fields of the current
VCCW are moved into the buffer. If the CCW
is a transfer-in-channel (TIC), the displa-
cement address of the CCW is set to point
to the desired CCW (displacement is from
CCW origin).

If buffering is not requested by the
user, the appropriate addresses in the
IORCB are set from values calculated in the
edit phase (the previous pass through the
VCCW list). The number of page list
entries is calculated for the privileged
request by a special branch to the initial
edit section. For read, write, and control
requests, the linkage is made from the CCW
page list pointer to the appropriate page
list entry, by searching through the page
list for an address which has the same seqg-
ment and page in the CCW.

For both buffered and nonbuffered
IORCBS, the following also occurs:

e The length of the IORCB is obtained by
adding to the fixed area, the buffer
area (either buffer or page list
entries), and the CCW list length.

Access Method for BSAM, MSAM, TAM and IOREQ

e« The length of the IORCD, if greater
than the maximum allowed, causes IOREQ
to return to the user with an error
code in register 15.

This pass thrcugh the VCCW list moves
the op-code count, and flag fields to
the appropriate CCW list entry in the
IORCB.

The protection key and other flags are
set in the IORCB.

The system programmer that entered at

the second entry point now returns with a
return code of zero in register 15. Hence
to execute his IORCB, the system programmer
must update the required fields and issue
his own IOCAL. The sequence IOREQ follows
for the I1I0REQ macro instruction user is:

Test the 10C flag in the last VCCw. it
set, this IORCB must be chained to the
next IORCB.

Move the DECB address into the gueue by
updating pointers to this DECB as well
as updating the number of IORCBs and
DECBs that are outstanding.

Determine if the IORCB is not to be
executed so that the DECB can be placed
in queue and marked intercepted.

Issue the IOCAL macro instruction.

Return to the user.

Section 3: Read/Write 45

SECTION 4: POSTING AND CHECK

POSTING AND CHECK PROCESSING

The following routines describe posting
and error processing for SAM, SAM direct
access, MSAM, TAM, and IOREQ, and the
operation of the Check routine.

SAM Posting and Error Retry Routine (CZCRP)

This routine processes a synchronous I/0
interruption caused by the termination of a
OAM I/7G aperation. It posts the completion
code 1n the event control block (ECB) of a
data event control block (DECB). In addi-
tion, depending upon tne device, this rou-
tine may perform other post-1/0 activities,
such as adjusting magnetic tape block
counts. The retry/recovery operations are
a4lso incorporated into this routine; they
dare employed if the channel status word
(CSW) returned at the most recent interrup-
tion reveals an abnormal end condition.
{See Chart CA.)

Attributes: Reentrant, nonrecursive, resi-
dent in virtual storage, privileged.

Entry Point: CZCRP1 -- Main entry point
via type-1 linkage.

Input: The channel status word (CSW) and
sense information pertinent to the 1I/0
operation are contained in the ISA.

Data References: CHADEC, CHADEB, CHADCB,
CHAIOR, CHAISA, CHASDA, CHASDT.

Modules Called:
VMER (CZRX2) -- Virtual memory error
recording.

VMSDR (CZCRYY) ~- Virtual memory statistic-
al data recording.

ABEND (CZACP1) -- Abnormal task
termination.

QLE (CZCJITQ) -- Build queue in task
monitor.

WTO and WTOA (CZABQ1l) -- Write message to
operator.

ASCII Translation (CZCWAl) -- Translate
ASCII data to EBCDIC.

DA Error Retry (CZCRH1) -~ Direct access
error retry routine.

46 Part I:

Reset (CEEAH)
device.

-- Permit task to access I/0

SYSER (CEAIS) -- System error processor.

Exits:
Normal -- Return to task monitor.
Error -- An ABEND is issued if the 1/0

device is not tape or disk.
issued if:

A SYSER 1is

* A program check has occurred.

e A protection check has occurred.

® A specification error has occurred.
® The CSW has a status of X'00°.

® There was no entry for the SDA.

* A command reject occurred because of
an invalid op code.

Operation: SAM Posting examines the com-

pleted IORCB and either posts the DECR or

passes control to a device-dependent error
routine.

Completion of the requested I/0 is sig-
nalled by the device via an I/0C interrup-
tion that is associated with the IORCB by
the Supervisor.

The completion information, along with
the IORCB, is passed back to the requesting
task as a synchronous I/O interruption
enqueued on the TSI. During the interval
between request and response, the task
could have generated other I/0 reqguests,
and possibly had its time slice ended.

SAM Posting requires that all interrup-
tions be masked. It will process a synch-
ronous I/0 interruption to completion,
regardless of the interrupted operation.
SAM Posting will process only one synch-
ronous I/0 interruption at a time for a
given task.

The I/0 Supervisor is expected toc return
unexecuted IORCEs when there is an 1/0
interruption caused by hardware failure, a
unit check, or a unit exception condition.

SAM Posting expects the following fields
of the CHADEC Table (DECB) to be zeroed:
ECB, BSJ, SB1, SB2, FLG, CSE. Under error
conditions, it examines BSF to determine
how many sense bytes from the ISA are to bhe
saved for user reference. These are placed

Access Method for BSAM, MSAM, TAM and IOREQ

in the last field of the DECB {normally BSF
will contain X'02°', indicating all eight
sense bytes are to be saved).

For the Control routine (CNTRL), IORCB,
Rewind, and Rewind and Unload, the DECB
pointer in the IORCE will equal zero. The
Check routine will clear the Error flag in
the DEB to zero upon return from the user's
SYNAD routine.

In handling the I1/0 synchronous inter-
ruption, the task monitor performs short
save to provide working registers, and
executes a type-1 call for the appropriate
posting and error recovery routine. SAM
Posting is the proper routine for SAM.

SAM Posting first determines if the
JORCB has been executed. An IORCB would
not be executed if the preceding I/0 opera-
tion for that device had resulted in an
abnormal completion. (Such a check must be
done to handle error conditions properly
when multiple IORCBs can be outstanding for
one device by one task.) If the IORCB was
not executed, the IORCB is reissued (via
IOCAL), or the DECB is posted to indicate
= Intercepted” status. The choice depends
upon whether the preceding condition was a
permanent error.

NORMAL COMPLETION: If the IORCB was
executed, a test for normal completion is
made. If normal, the event control block
of the DECB is posted to indicate normal
completion. SAM Posting also perxforms
other optional services which can only be
done after completion of the I/0 operation:

e Data Movement - Movement of data from
an IORCB buffer to the user area for an
input operation can be requested by the
user.

¢ Magnetic Tape Block Counts and Unit
Exception Flag - SAM Posting increments
(for forward tape movement) or decre-
ments (for backward movement) the prop-
er counts. The routine also sets
appropriate flags for unit exception
conditions.

e Direct Access Read Variable Length
Record and Pending C.W.E. Flags - The
routine will perform the appropriate
address movement and flag setting.

OTHER THAN NORMAL I/0 COMPLETION: IOS will
lock the device to further I/0 by this
task, until a Reset SVC is issued by SAM
Posting. This Reset SVC, when issued, will
set off the suppression flag so that the
task may resume 1/0 activity on the device
in question.

If the I/0 was not normally completed,
further tests are made and control is
passed, if necessary, to device dependent
erroxr recovery routines which, it possible,
will issue a retry I/0 request. Each of
these device dependent error recovery rou-
tines subsequently returns to the posting
routine.

Unrecoveraple (Hardware) krror Ccmpletion -
General {non-device-dependent) Processing:

" 1f the CSW information associated with the

executed IORCB does not indicate comple-
tion, the routine searches for an immediate
hardware indication of unrecoverable error.

1f the error or condition is rot yet
considered to be unrecoverable, the routine
will issue a Reset SVC to ICS. The purpose
of the Reset SVC is to "unlock™ the device
queue previously "locked”™ by the 1/0
Supervisor.

I1f the error is unrecoverable, the
appropriate flags, addresses and counts are
set.

Recoverable Error or Exceptional Condition
(non-Error) Completion - General Proces-
sing: This condition is indicated by the
Unit Check or Unit Exception flags.

Recoverable Error or Exceptional Condition
Completion - Device-Dependent Processing:
If possible, depending on the device, N
retries over the original path and also N
retries over 3 alternate paths will be
made, until a successful retry or until the
set maximum of retries is reached. In the
latter case the failure is termed a "hard"
failure. The VMER routine is called to
record data associated with this "hard®
failure.

Appropriate flags are set, messages are
put out, counters are incremented, informa-
tion is saved, and routine linkage is
effected.

Device-Dependent Error Procedures: The
following are general notes on the device
dependent error procedures:

Error indication: When certain malfunc-
tions occur, the CSW will contain more than
one error indicator. Generally, only one
of these properly describes the malfunction
while the other(s) indicate secondary
effects. Similarly, some devices/control
Unit errors can cause more than one sense
bit to be present.

Original and alternate path retries: For
some error conditions, there are no origin-
al path retries. However, there are always
alternate path retries. An original path
retry utilizes the same channel and device
as that used in the original erroneous I/0

Section 4#: Posting and Check 47

operation. An alternate path retry uses
the same device, but goes through a dif-
ferent channel.

Number of retries: The number of retries
15 dynamic; the installation, however, not
the user, determines the threshold number.
In the descriptions of the error retry pro-
cedures, in most cases N = a + b where a is
the threshold number, and b is a constant
for that particular approach to recovery.

User's SYNAD routine: If appropriate, SAM
Posting will set the SYNAD flag in the
user's DECB. The user‘®s SYNAD routine is
his own "error® routine. It does not,
however, attempt error recovery on 1/0
devices, but rather determines if the user
wants to terminate or continue processing.

Return codes from error recovery routines:
00 - Retry in progress.

04 - Permanent error encountered, no
retry.

08 -~ Normal completion.
0C - Complete with error without retry.

10 -~ Complete with error after retry.

Rebuild of the IORCB:

The IORCB will be in page 0, segment 0O
of virtual storage (that is, within the
interruption storage area). The issuance
of an error retry IORCB will consist, in
the main, of initializing certain fields
automatically, conversion of the CCW list
from real core to virtual storage
addresses, appending of the CCW list if
required, and initialization or modifica-
tion of other fields within the IORCB. The
purpose of these actions is to provide I10S
with an input IORCB, that is, an IORCB with
no main storage references, and no past
action flags set (such as start 1/0
failure).

The need for appending a channel program
with additional CCWs is determined in
accordance with error retry requirements.
The appendage will be made to the end of
the channel program. If additional CCWs
are added to the IORCB, the following
fields will require incrementing or other
modification:

1. IORLN -- IORCB length; calculate the
new value in accordance with the numb-
er of additional CCWs in the appended
list.

48 Part I:

2. IORCL -- CCW list length; increment by
the number of additional CCWs
appended.

3. IORST -~ Relative origin of "Start
ccw". Modify this field in accordance

with the error retry procedure.

4. IORSC -- IORCB Software Command Chain
flag set if addition to the CCW list
requires it.

MAGNETIC TAPE - 2400 TAPE SERIES ERROR
RETRY PROCEDURE: The device-dependent
error procedure for the 2400 tape series is
described as follows:

Unit Check (CSW bit 38): The routine

checks the sense byte information to deter-
mine the cause of the unit check condition.
Sense byte information will be found in
segment 0, page 0 of virtual storage.

Next, the routine checks the corresponding
bit position in the IMSK field of the DCB.

Load Point Sense Bit Only: The routine
will set Complete With Exror in the ECB,
set on the Error flag, and move the CSW and
the first two sense bytes from segment 0,
page 0, to the DECB. The tape block count
will be decremented by 1 and DEBMSK in the
DEB will be incremented by 1.

Load Point and/or Other Sense Bits Set:

1. Bus Out Check (Byte 0, bit 2) -- The
retry will consist of repositioning
the tape, if required, and a repeat of
the failing CCW. If tape motion takes
place and the failing operation is a
forward or backward space of record or
file the error will be deemed unrecov-
erable. The routine will set the Per-
manent Error indication in DCBIFL, set
the Permanent Exror flag in the DEB,
and provide a return code of '04°.

2. Equipment Check (Byte 0, bit 3) -- Bit
7 of sense byte 3, or one or more of
the bits of byte 4, will also be set
to give more detail about the hardware
failure. There is no original path
error retry. Since data transfer and
tape motion are indeterminate for all
equipment checks, there will be no
alternate path error retry. The rou-
tine will set the Permanent Error
indication in DCBIFL, set the Per-
manent Error flag in the DEB, provide
a message to the operator, aad provide
a return code of *04' in genzral
register 15.

3. Intervention Required (Byte O, bit 1)
-- If the addressed tape unit is non-
existent, (indicated by sense byte 1,

Access Method for BSAM, MSAM, TAM and IOREQ

bit 2 equal to zero), the routine will
try an alternate path.

The routine will also perform ABEND
processing for a control roufine IORCB
when the operation is other <than
rewind and unlocad (RUN). If the
operation is RUN then a return code of
zero will cause a return to the task
monitor. For a non-control routine
IORCB, if the selected tape unit is in
the end-of-tape area, the routine will
set Request for Synad in the DECB and
the Error flag in the DEB. It will
alsoc set Complete With Error in the
ECB, move the CSW to DECCSW, move the
first two sense bytes to DECSBO and
DECSB1, and all eight sense bytes to
DECASB. The routine will then set a
return code and a message will be sent
to the operator to demount the tape.
If the selected tape unit is not in
the end-of-tape area, execution of the
CCW list will be resumed from the
point of interruption. A message will
be sent to the operator to ready the
tape unit, and the routine will set a
return code of zero after a return
from the IOCAL routine.

Overrun (byte 0, bit 5) -- Data
transfer will be stopped. Retries
over the original path will consist of
repositioning the tape and re-
initiating the failing command. This
error should not be associated with a
control operation and, if such should
be the case, the routine will request
an abnormal termination of the task.
If the error retries fail, the routine
will send a message to the operator.

Data Check (byte 0, bit 4) -- Bits 0
through 3 of byte 3 will be set to
give more specific detail regarding
the data check.

a. Control Cperation -- If the fail-
Ing operation 1s write tape mark
(WTM) , then original path error
retry will be attempted N times.
The error retry procedure will
consist of backspacing the tape
one block, followed by an erase
gap command, and then a repeat of
the failing write tape mark opera-
tion. 1If the error retries fail,
the routine will send a message to
the operator.

If the failing operation is other
than WTM, the original path error
retry will be attempted N times by
retrying the command which failed.

b. Write Operation -~ Same as first
paragraph of a.

c. Read Operation -- If the operation
was a read backwards and if the
tape is at load point, spurious
noise was detected and the data
check should be ignored. 1In this
instance the routine will set on
the DEB error flag, mark the ECB
Complete With Errcr, and move the
CSW into DECCSW and sense bytes
into DECSBO and DECSBl. If this
was an error retry IORCB, the rou-
tine will set off the Error Reco-—
very In Progress indication and
set a return code in general
register 15. If this was not an
error retry IORCB, the routine
will set a return code in general
register 15. If the tape is not
at load point, or if it is at load
point but the operation was not a
read backward, then a test is made
to see if the block meets minimum
block length requirements.

If this is a noise block, and the
interruption occurred on the last
CCW, the routine will set a return
code for Normal Completion ter-
mination processing in general
register 15. If more CCWs remain,
the routine will rebuild the
IORCB, and will resume the channel
program from the point of inter-
ruption. Whether the record was a
noise record or not, the read will
be retried N times. The error
correction programming sequence
consists of setting the correct
mode, repositioning the tape,
sending track-in-error information
to the control unit, and then
issuing a read or read backward
command. An error that persists
should cause the tape to be back-
spaced five blocks (if five are
available), thus placing the tape
past the tape cleaner. An attempt
is again made to read the tape,
using the procedure just described.
This loop should be repeated until
the error is corrected, up to a
maximum of N reads. Should the err-
or still persist, the associated
block is defined as a permanent
read error. The routine sends a
message to the operator indicating
an unrecoverable error.

Data Converter Check {(byte 0, bit 7}
- If the chaining check bit is on,
the action in the subsection referring
to CSW bit 47 below is performed. If
the chaining check bit is not on, the
routine will abnormally terminate.

Command Reject (byte 0, bit 0} -- If
the tape is file protected and the
channel command word was a write,
write tape mark, or erase gap, the

Section 4: Posting and Check 43

DECID is set to X*#80°, an unrecover-
able exror indication is set, SYNAD is
requested, the error is recorded
through the VMER macro, and return is
made. If the tape is not file pro-
tected, an exit 1is made via SY3ER.

Chaining Check (CSW bit #7): If the fail-
ing operation is a read command, the ori-
ginal path error retry is attempted N
times. The error retry consists of reposi-
tioning the tape and reinitiating the com-
mand that failed. If the error persists,
the routine provides a message to the
operator indicating "unrecoverable error®.
The routine will also set on the *"Permanent
Error® flag, set on the *Permanent Error®
indication, and move the channel status
byte from the CSW to the IORCB. The rou-
tine will send a return code of °‘04° in
general register 15.

I1f the chaining check occurs on other
than a read operation after N errox retri-
es, the routine:

{1) Sets the Error and Permanent Exror
flags on.

(2) Sets DCBIFL to Permanent Error
condition.

{3) Sets DECECB to Complete With Error.
{(4) Sets Synad Requested in the DECB.
(5} Moves CSW from ISA to IORCB.

(6) Interfaces with the VMER routine.

Unit Exception (CSW bit 39): This bit is
set to indicate a read of a tape mark, ©or a
write in the end-of-tape area. If the CCW
involved in this interruption is an erase
gap (ERG) and there are remaining CCWs, the
routine sets the IORUE flag on, rebuilds
the IORCB, and resumes the CCW list with
the remaining CCWs. If this interruption
occurred on an error retry within an
appended CCW, the routine rebuilds the
IORCB and restarts with the origimal fail-
ing CCW.

If this was not an error retry, or if
the interruption did not occur on an
appended CCW, or if the CCW involved was an
ERG with no remaining CCWs, the routine
will process as follows:

(1) Set on the Error flag.
(2) Set DECECB to Complete With Erxror.

(3) Move the CSW to DECCSW.

50 Part I:

(4) Move the first two sense bytes to
DECB8BO and DECSB1 and all eight sense
data bytes to DECASB.

Incorrect Lenqth (CSW bit 41): If the
failing CCW is a read operation the routine
will determine if the record length con-
forms to one of the following standards:

For fixed block the record length equals
a multiple of the block length.

For variable length the CCW count equals
the residual count plus LL. For an ASCII
variable-length record the CCW count equals
LL plus the buffer offset minus 4.

An undefined length is automatically
acceptable, and a "fixed standard® length
is an automatic error.

If acceptable, *normal completion® is
set and a return occurs. If in error,
*SYNAD request” and ®"complete with error®
are set in the DECB, ®"unrecoverable error®
in the DEB, the sense bytes and CSW bytes
are saved in the DCB, and a returm occurs.

DA Error Retry Routine (CZCRH)

DA Error Retry processes synchronous I1/0
interruptions originating from a SAM or an
Obtain/Retain operation on a DA device. DA
Error Retry modifies the channel program,
rebuilds the IORCB, and reissues the I1/0
request (see chart CB).

Attributes: Privileged, reentrant, closed,
resides in virtual storage.

Entry Point: CZCRH1 -- Entered via type-i

linkage.

Input: When this routine is entered, the
channel status word and sense information
pertinent to the I/0 operation are con-
tained in the ISA.

Data References: CHASDT, CHAISA, CHAIOR,
CHBADEB, CHADCB, CHADEC.

Modules Calied:
VMSDR (CZCRY) -- Virtual memory statistical
data recording.

VMER (CZCRX) -~ Virtual memory error

recording.
VMA (CZCGA) -~ Get work area.
SIR (C2CJS) -- Select interruption request

(handle asynchronous I1/0).
QLE (C2CJT) -- Build queue in task monitor.

WIro (C2ABQ) -- Send message to operator.

Access Method for BSAM, MSAM, TAM and IOREQ

;PAThH (CEARAB) -- Mark the device, control
unit, or channel, down or OK.

{TRCT (CEAH3) -- Get task ID.

SETAE {(CEAAK) -- Set up interrupticn gueue.

Exits:
Normal -- Return to SAM Posting with the
return code in register 15.

Error --

e Abnormal termination via the ABEND
macro instruction.

» SYSER.

Operation: For general notes on device-
dependent error procedures, see the SAM
Posting and Erxror Retry routine, "Opera-
tion®™ section, under "Device-Dependent
Error Procedures.”

For each error retry attempt the DA
Error Retry routine increments the appro-
priate error retry counter by 1, sets the
Error Retry flag on in the IORCB, sets the
Error flag on in the DEB and sets the Error
Recovery in Progress indication in the DCB.
The IORCB is rebuilt appropriately and
executes the IOCAL SVC preparatory to re-
execution of the channel program. A return
cocde of zero is set in general register 15
prior to returning tc the calling routine.

For each unrecoverable (permanent) error
the routine sends a message to the operator
indicating unrecoverable error, sets on the
Permanent Error flag, sets the Permanent
Error indication in DCBIFL and moves the
channel status byte from the CSW in the ISA
to IORCSB. When the error source is indi-
cated by the channel status byte, this rou-
tine interfaces with the VMER routine, sets
a return code of °04°' in general register
15, and returns to the calling routine.

When the DCBIMK corresponding bit is
zero (that is, the user does not wish to
have a retry for this error), the routine
will move the CSW from the ISA to DECCSW,
move sense bytes 0 and 1 from ISA to DECSBO
and DECSB1 respectively, and set return
code of *0C" in general register 15.

The following shows termination proces-
sing to be done by the SAM calling routine
after the direct access retry routine sets
a return code in general register 15 other
than zero. For a return code of zero
(which occurs when the error recovery pro-
cedure issued an Error Retry IORCB) the
calling routine will exit to the task mon-
jtor without any further processing.

r T -1
| | Return Cnde in |
i IG.R. 15 |
| F"‘Y“T"T"‘T“—”{
i |04 08{0C|10|14 |
b--- A e e e
|Set DECECB=X'41°'=Com~ |yl {viwvl]
|plete With Error [

|
|

Action

|

| Set Synad Requested
jflag in the DECB

i
| MOve CSW to DECCSW
{
|Move sense bytes 0 and
|1 to DECSBO and DECSB1
|
|Set Exrror flag,
|DEBNF1, to 1

|
| Decrement DEBIOC by 1
| tAllowed IORCB o/s

| Count)

|
{Move data from IORCB
|to user virtual stor-
lage, if required

!

1

| v
|
|
!
|
|
|
|
]
i
i
|
|
|
|
|
|
i

| pevice-dependent termi-| v

|
|
|
|
!
|
|
|
{
|
|
|
|
|
|
|
|
|
4

viv

<

v

<«

viv

viv

<
<

v

<
<

<«

vV

ination processing
|
|Normal Completion

|=*7F' set in DECECB
|
|Link to VMSDR -- after
|successful error retry

<

v

|
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
v
|

|
jLink to VMER

viviv

|

{Clear DEBNF1l to zero
|after successful error
jretry

|
|Set DCBIFL Error Re-
|covery in Progress in-
{dication=0 after suc-
|cessful erxorxr retry

v

|
|
!
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
!
|
|
{
!
|
|
|
|
|
!
!
i
i
§
|
|
v !
i
|
|
4

|
{ |
i |
| [
b |
fv i |
o i
vl |
i |
P |
b |
o |
P |
vl |
b |
b {
P |
twvi |
L |
P |
{1 |
{ v v
I |
i {
v |
i |
P |
vl |
[|
(I |
P |
b]
fvi |
P |
[|
b |
i vl |
(I |
I |
P |
b d 4

|
|
|
|
|
]
i
|
!
|
|
i

CONTINGENT ADDITIONAL PROCESSING: In addi-
tion to that processing which occurs with
each error retry attempt, the following
contingencies may be encountered and the
ensuing processing involved.

Channel Data Check (2311, 2314, 2302):
Original path error retry is attempted

Fach time an alternate path is requested,
the channel status byte of the CSW will be
moved from (0, 0) to IORCSB in the IORCB to
be used by the VMER routine.

Unit Exception: The Error flag is set on

and a test is made for a corresponding
DECB.

1. If a corresponding DECB exists, DECECB
is set to indicate Complete With

Section 4: Posting and Check 51

Erxor, the CSW is moved from the ISA
to DECCSW, and two bytes of sense
information are moved from the ISA to
DECSB¢ and DECSB1.

2. It a DECB does not exist and this is
not a retry IORCB, a return code of
*0C' is set in general register 15
before exit. Otherwise, when a DECE
does not exist and this is a retry
IORCB, a return code for VMSDR inter-
face is set prior to exit.

Chaining Check: There will be N original
path erroxr retry attempts consisting of
repeating the original CCW list,

neorrect Length: The action taken in this
case is contingent upon the format of the
record being processed as indicated in
DCBREC. The possible logical paths and
actions performed are:

1. Unknown -~ normal completion is indi-
cated by a return code of '08°.

2. Variable -~ if the residual count of
CSW is equal to zero, Complete With
Error is set in the DECB, the SYNAD
Requested flag is set, the Error flag
is set in the DEB, the CSW is moved
from (0, 0) to the DECB, and the
return ccde is set to °*0C°.

if the residual count of the CSW is not
equal to zero, a comparison is made between
zero, and the difference obtained by sub~
tracting the sum of the CSW residual count
and the 'LL®* count from the CCW count.

If the result of subtraction is 0, the
return code is set to '08'; and Normal Com-
pletion processing will take place. If the
result of subtraction is not 0, "Complete
With Error®” is set in the DECB, the SYNAD
Requested flag is set, the error is indi-
cated in the DEB, the CSW is moved from (0,
0} to the DEVB, and a return code of '0C?
is set.

Unit Check (2311, 23i#%, 2302): The number
of retries over the original path is depen-
dent upon the type of error which caused
the unit check condition. Examination of
the sense byte data will indicate the error
cause. Prior to any diagnosis or error
retry, the appropriate bit in the DCBIMK
field of the DCB is tested against the
cerresponding bit set in the sense byte
data. If the bit is off, further proces-
sing will be that as contained above for
DCBIMK corresponding bit equal to zero. If
the bit is set on, diagnosis and retry con-
tinues as follows:

Equipment Check (byte 0, bit 3) -- There
is nc original path error retry. The

52 Part I:

alternate path error retry will coasist of
repeating the original CCW list.

No Record Found (byte 1, bit 4) -- When
the Missing Address marker (byte 1, bit 6)
is also set, there are N original path
error retry attempts. For & 2311 the error
retry procedure consists of a Restore CCW
followed by a TIC to seek the original
address.

If the Missing Address Marker bit is not
set, there are N original path error retry
attempts. Initially this error retry pro-
cedure consists of verification of the home
address. This is done by comparing the
CCHH of the home address stored in the
IORCB against the CCHH of the search argu-
ment. If the comparison indicates equali-
ty, an ABEND situation is encountered. The
routine performs termination processing by
setting on the Error and Permanent Erxror
flags, setting ABEND Requested in the DECE,
and setting the return code to '0C' in gen-
eral register 15.

If the CCHBH comparison indicates an
inequality, the error retry procedure will
be as indicated when the Missing Address
marker is set.

Seek Check (byte 0, bit 7) -- If Command
Reject (byte 0, bit 0) is also set, an
ABEND situation is encountered, and a
return code of X°12° is set before return.
If Command Reject is not set, there are N
original path exror retry attempts.

Intervention Required {byte 0, bit 1} --
A message will be sent to the operator to
ready the device and execution of the CCW
list will be resumed from the point of
interruption.

Bus Out Check (byte 0, bit 2) -- The
original path error retry attempt will con-
sist of repeating the original CCW list.

Data Check {(byte 0, bit 4) -~ There will
be N original path error retry attempts
consisting of repeating the original CCW
list. After unsuccessful retries, if there
is a data check in the count area, the rou-
tine abnormally terminates. If there is a
data check in the count area, and the Read
Variable Length Records flag is set, and
the failing CCW is the last in the CCW
ilist, then termination processing will be
in accordance with the return code in gen-
eral register 15 set to °*04'. 1Ii the fore-
going ‘AND' situation does not occur the
Exrror and Permanent Error flags, DEBNF1 and
DEBNF2, are set, and an ABEND is effected.

When error retry has been exhausted for
data check and there is no check in the
count area, then Overflow Incomplete (byte
i, bit 7) is checked. If there is an

Access Method for BSAM, MSAM, TAM and IOREQ

"Overflow Incomplete® condition, processing
will be as follows:

a. Add 1 to *HH' of seek to seek to next
consecutive track.

b. Set R=1 in search argument.

c. Set "CCHH®' of search from °"CCHH® of
seek argument.

d. Append CCW 1list *B' to original CCW
list.

e. Set start CCW to 1st seek of List 'B°'.

f. Bookkeep (IORCB) IORCL and IORLN
fields.

g. Adjust count and data address of fail-
ing CCW.

h. Execute IOCAL SVC after setting flags.

When error retry has been exhausted for
data check and there is no data check in
the count area, and Overflow Incomplete is
not set then:

1. If the Read Variable Length Records
flag is set on:

a. Subtract 1 from °'R"' field of

search argument.

b. Append appropriate CCWs to the
original CCW list in order to
ensure that the correct data area
is being searched.

c. Set Start CCW to first seek of the
appended channel program.

d. Bookkeep IORCL and IORLN fields.

e. Execute IOCAL SVC after setting
flags.

2. If the Read Variable Length Records
flag is not on:

a. For a read set a return code of
*04' in general register 15.

b. Set DEBNF2 and a return code of
*04' in general register 15 for a
Write operation.

overrun (byte 0, bit 5) -~ There will be
N original path error retry attempts con-
sisting of repeating the original CCW list.
When the retries are unsuccessful, an ABEND
situation is encountered.

Missing Address Markers (byte 1, bit 6)
-~ There will be N original path error
retry attempts consisting of repeating the
original CCW list.

Command Reject (byte 0, bit 0)
is an ABEND situation.

-~ This

Track Condition Check (byte 0, bit 6) --
An additional check is made on the Read RO
Failed and Alternate Track Indicators. If
the read RO failed, this is an ABEND
situation.

If the Alternate Track flag is set, the
‘CCHH' of the seek argument is set equal to
the '"CCHH®' of the defective track plus one,
and one of the following will occur,
depending upon conditions:

1. If the Overflow Incomplete (byte 1,
bit 7) bit is not set append CCW list
"A™ to original CCW list, set start
CCW to first seek or "A"™ CCW list,
bookkeep IORCL and IORLN, and Execute
IOCAL SVC after setting flags.

2. If the Overflow Incompiete bit is set
on, set R=1 in the search arqument,
set search argument °'CCHH' from seek
argument °CCHH', append CCW list "B"
teo original CCW list, set start CCW to
first seek of list "B", set the IORCL
and IORLN fields of the IORCB, adjust
the count and data address of the
failing CCW, and execute the IOCAL SVC
after setting flags.

I1f the Track Condition Check is set and
the Alternate Track flag is not set, the
DEBATK and DEBETK *MBB" are set from the
seek argument 'MBB°, the DEBATK °*CCHHR®' is
set from the 'CCHHR®' of the alternate
track, the DEBETK *CCHHR®' is set from the
*CCHHR®' of the defective track, and the
seek argument ‘'CCHH®' is set from the °'CCHH®
of the alternate track. If Overflow Incom-
plete is not set, process as in 1 under
Track Condition Check. If Overflow Incom—
plete is set, process as in 2 under Track
Condition Check.

Track Overrun (byte 1, bit 1) -- There
will be no error retrxry. The routine will
set a return code of '0O4' in general
register 15 and will return to the calling
program.

Cylinder End (byte 1, bit 2) -- If the
Overflow Incomplete bit is set, or if Read
Variable Length Records is not set, or if
the failing CCW is not the last in the ori-
ginal CCW list, then the processor will set
on the Error flag and the Permanent Err
flag, set DECECB to Complete With Error,
set on the DECB ABEND Required flag bkit,
and set DCBIFL to indicate Permanent Error
condition. The CSW is moved to the DECCSW,
sense bytes 0 and 1 to DECSBO and DECSBl, a
message is provided to the operator indi-
cating a permanent error and there is a
return to the calling program with a return
code of '0C*' in general register 15.

Section 4: Posting and Check 53

if overflow Incomplete is not set and
Read Variable Length Records is set and the
failing CCW is the last of the CCW list,
then the routine will set DEBNIO to all 1
bits, set IORRV=0, set a return code of
*08° in general register 15 and return to
the calling program for Normal Completion
pProcessing.

File Protect (byte 1, bit 5) -- The com-
mand reject bit will also be set when this
condition is detected. There will be no
error retry. This is an ABEND situation.

MoAM Posting and Error Retry Routine
{czeMe)

This routine records the results of an
170 operation from or to a unit record
device and determines future processing.
MSAM Posting is called by the task monitor
as the result of a synchronous I/0 inter-
ruption following the execution of an IORCB
by the MSAM Read/Write routine, or as the
result of an asynchronous 1/0 interruption,
such as when the operator has reset a
jammed device. If the I/0 operation was
completed normally, MSAM Posting records it
so that further processing may continue.
if an errxor or unusual condition occurred,
MSAM Posting records the condition and may
determine whether to retry the operation or
notify the operator before returning to the
task monitor. (See Chart CC).

Attributes: Read-only, privileged, reen-
trant, nonrecursive.

Entry Points:
CICMG1 -- Primary entrxy point from the task

monitor with interruptions masked off.
Type-1 linkage.

CZCMG2 —- Entry point following an asynch-
ronous interruption. Type-1 linkage.

Input: Register 1 contains the address of

the ICB.

Data References: CHAISA, CHADCB, CBADEB,
CHADEC, CHASDT, CHASDA, CHAIOR, CHAICE,
CHADRP.

Modules Called:

VMER (CZCRX) -- Informs the operator of the
failing task I/C component and generates
I1/0 erxror records.

VMSDR (CZCRY) ~- Accumulates error statis-
tics on task I/0 devices.

5IR {CZCJIS) -~ Specify interruption

routine.
DIR (CZCJD) -- Delete interruption routine.
Reset (CEAAH) -- Reset Device Suppression

flag routine.

54 Ppart I: Access Method for BSAM, MSAM,

SYSER (CEAIS) -- System error processor.

WTO or WTOA (CZABQ) -- Write measage to
operator on console typewriter.

Exits:
Normal ~- Register 15 contains 00.
Exrror —-- Register 15 contains the return

code passed from VMER or VMSDR.

Operation: What happens in MSAM POSTING
depends on the type of device (reader,
punch, or printer) on which the I1/0 opera-
tion occurred, and on whether the device is
central (located at the central installa-
tion) or remote (located away from the
central installation; remote job entry).
Although the general logic in MSAM Posting
is similar for all unit record devices, the
sequence of operation and special consi-
derations vary and require separate
explanation. This description is divided
into two parts. The first part explains
MSAM Posting processing for central instal-
lation devices. The second part explains
MSAM Posting processing for remote job en-
try devices.

CENTRAL INSTALLATION DEVICES

NORMAL I/0 COMPLETION: On entry to MSAM
Posting, the number of outstanding ICRCBs
is decremented by one. After falling
through a series of abnormal condition
tests, the Retry in Progress flag is set
off in the DECB, the DECB is marked Normal
Completion, the remaining DECBs are checked
for Posting Reissue flag on (if so, the
associated IORCBs are reissued), and return
is made to the task monitor.

OTHER THAN NORMAL 1I/0 COMPLETION: In gen-
eral, where some abnormal condition is dis-
covered, retry procedures are initiated,
depending upon the condition and the
device. If recovery is possible and the
number of retries for a given condition has
not been exceeded, the IORCB is reissued by
MSAM Posting. If no recovery is possible,
or if all recovery procedures have failed,
the DECB is marked complete with error, and
flags are set for unrecoverable and, if
applicable, permanent exrror. A modified
form of the CSW and the ISA sense byte are
moved to the DECB, a message is sent to the
operator with the WIO instruction, all
DECBs whose Posting Reissue flags are set
on are marked intercepted, the Posting
Reissue flag is reset, and control is
returned to the task monitor.

Priority of Checking I1/0 Results: The
tests in MSAM Posting to determine results
of the I/0 operation are made in the fol-
lowing order for a card reader or card

punch:

TAM and IOREQ

1. No Path Available

2. Purged I/0 Operation

3. CCWs Not Relocated (specification
error)

4. 1IORCB Intercepted

5. Start 1/0 Failure

6. CSW Status Zero

7. Prior Error Check {(on normal
completion)

8. Channel Control Check

9. Interface Control Check

10. Channel Data Check

11. Invalid CSW Status Bits Set

12. Unit Check - Sense Failure (invalid
sense information)

13. Unit Check - Intervention Required
14, Unit Check - Command Reject

15. Unit Check - Bus Out Check (initial
selection)

16. Unit Check - Bus Out Check {data
transfer)

17. Unit Check - Equipment Check
18. Unit Check - Data Check
19. Unit Check - Unusual Command Sequence

20. Prior Error Check (not normal
completion)

21. Program Check
22. Protection Check
23. Unit Exception

The priority for checking an I/0 operation
for a printer is:
1 - 12. same as for reader and punch

13, Unit Check - Equipment Check

14, Unit Check
Parity

Code Generation Storage

15. Unit Check - Intervention Required

i

16. Unit Check
transfer)

Bus Out Check (data

17. Unit Check - Bus Out Check (initial
selection)

18. Unit Check - Channel 9
19. Unit Check - Command Reject

20. Unit Check

Data Check (UCS option)

21. Prior Error Check (not normal
completion)

22. Program Check

23. Protection Check

24. Unit Exception

Description of Posting and Recovery
Efforts: Posting and recovery efforts in

the order in which they occur (based on the
priority lists above) are described below.

Name references appearing in parentheses
at the end of paragraphs in the following
descriptions correspond to block labels in
flowchart CC and statement names (labels)
in the listing of module CZCMG (MSAM
POSTING) .

No Path Available is set because no path
is available and may be due to setting all
paths disabled during alternate path retry.
The associated entry in the SDAT for the
device will be marked "phase out" by set-
ting SDACE. The SDA entry must be locked
during this change. A.message is sent to
the operator and permanent error posting is
done (TESTLOCK).

A Purged I/0 Operation indicated by
IORPG causes an unrecoverable error to be
set and return is made to the task monitor.
A permanent error will be set if purged I/C
occurs recursively more than ten times
{TSTPURGE~-UNRERR2) .

If the CCWs are not relocated (specifi-
cation erxrror), an unrecoverable error is
posted and a minor software.erroxr is rec-
orded by issuing the SYSER macro instruc-
tion (CCWSFPEC).

IORCB Intercepted occurs when one or
more IORCBs to be executed during an opera-
tion failed to be executed because of an
interruption during an IORCB being executed
earlier in the operation. .If no prior
unrecoverable error has been recorded and
retry is not already in progress, the IORCB
is reissued (INCEPTED - PRIERR).

Start 1/0 Failure indication occurs for
busy or not operational conditions. An
alternate path is requested by setting
IORAL, and a message is sent to the opera-
tor after requesting alternate path retry.
If successful, normal posting occurs. If

Section 4: Posting and Check 55

unsuccessful, each alternate path is tried
once and a message iS sent to the operator.
when all paths have been tried unsuccess-
fully, permanent error posting occurs
(INCEPTED} .

A Zero CSW should not occur and causes

an unrecoverable error to be posted and a
minor software SYSER (TSTCSW).

Prior Exroxr Check indicated when CSW
status bytes equal normal completion means
some previous data may have been lost. The
Error Retry flag is set off and an unrecov-
erable error is posted unless the I/0
cperation involves Form-D printing (that
is, a dump). 1In that case, the cperation
is not considered unrecoverable and normal
completion posting occurs (TSTSTAT).

Channel Control Check is one of four
error conditions that is retried and then
posted as anp unreccverable erroxr when suc-
cessful. This is because a record may have
been lost or duplicated. These error con-
ditions (channel control check, interface
control check, invalid status or sense con-
dition) set the error check flag, IOREC, to
permit correct posting after retry occurs.
If none of these error types occur after
retry, then an unrecoverable error is post-
ed. An exception is Form-D printing which
is analyzed for a lower priority error or
posted normal. After determining a channel
control check condition exists, the flags
iORAL and IOREC are checked to see if a
prior error condition caused alternate path
retry to be requested or if a prior Error
Check condition occurred. If either flag
is set, VMER is called to record a hard
inboard erxor, the Alternate Path Retry
flag is set, and a message is sent to the
operator prior to reissuing the IORCB. If
a prior error condition does not exist, the
Errxor Check flag is set and the IORCB is
reissied along the same path. A successful
retry results in an unrecoverable error
being posted (unless Form-D printing is
undersay). Unsuccessful retries result in
one retry at each alternate path, with VMER
being called and a message sent to the
operator in each case {TESTCCC-ALTPATH1).

Interface controi check occurs if there
are chamnel or control unit problems. Pro-
cessing is the same as for channel control
check above (TESTICC).

Channel Data Check occurs when the chan-
nel detects a parity exror in the informa-
tion transferred to or from main storage on
an I/70 operation. VMER is called to record
the error on each occurrence. Processing
is as follows: Flags IORAL and IOREC are
checked to determine if a prior error con-
dition caused alternate path retry to be
requested or a prior Erxror Check condition
occurred. If either flag is set, alternate

56 Part 1:

path retry is requested, VMER is called to
record the error, and a message sent to the
cperator. 1If neither flag is set, the same
path is retried according to the threshold
values SDTCRO, SDTPUQ, or SDTPRO for the
card reader, punch or printer respectively.
Normal posting is done for successful
retry. An alternate path is requested if
the threshold value has been exceeded. A
message is sent to the operator after requ-
esting retry at an alternate path
(TESTCDC-ALTPATH2) .

Invalid CSW Status Bits cause processing
similar to that for channel control check.
The invalid bits are 32 (attention), 23
{status modifier), 34 (control unit end),
47 (chaining check), and 41 {incorrect
iength); these bits should not be set for
unit reccrd devices. VMER is called to
record the error on each occurrance; a mes~
sage is sent to the operator after request-
ing retry at an alternate path (TESTINVL).

Unit Check - Sense Failure is processed
the same way as channel control check. A
sense failure is caused by a sense command
failure or invalid sense information.
Sense bits 5 and 7 should not be set for
the card reader or card punch. Sense bit &
should not be set for the printer. Sense
bits 4 and S may be set for the printer
only if UCS is specified. BAll conditions
can occur for either channel or control
unit problems. VMSDR is called to record
the error and a message is sent to the
operator after requesting retry at an
alternate path. EFach alternate path is
tried once {TESTUC).

The following unit check processing is
dependent on the type of unit record
device. ‘

e For the reader or punch:

Unit check - intervention required
occurs when the unit is not ready due to
any of several conditions. Cards are not
at each station (not EOF for reader), a
stacker is full, the hopper is empty (not
EOF for reader), the stop key is depressed
the chip box is full or removed, or a card
is jammed. A message to the operator is
set up telling him that intervention is
required. Asynchronous interruption proce
dures follow. The message previously set
up is sent to the operator (WTO). The Spe
cify Interxuption Routine (SIR) macro
instruction is issued, the Error Recovery
in Progress flag set on in the DEB, and
control is returned to the task monitor.
The operator performs the required action,
correcting the condition requiring inter-
vention or replacing the card on the equip
ment or data check, and makes the device
ready. The asynchronous interruption
occurs, control is transferred to the Post

Access Method for BSAM, MSAM, TAM and IOREQ

L O

&

ing entry point, CZCMGZ2, the virtual
storage IORCH is reissued, the number of
outstanding ITORCBs 15 incremented by one
and return 1i1si made to the task monitor
{INITSEL-ISINTV).

A Command Reiject occurs when a command
1s given which the device is unable to
execute. Posting is done for an unrecover-
able error and if the DCB did not specify
FORTRAN (formerly ASA) or machine control
characters a minor software SYSER is rec-
orded (TESTCREJ).

Unit Check - Bus Out for the reader or
punch occurs when a parity error is
detected on a bus out during either initial
selection or command selection. Original
path retry will be attempted the number of
times specified in the SDT. A flag will be
set in the DEB to indicate error recovery
is in progress and the Error Retry
Attempted flag set in the IORCB. The vir-
tual storage IORCB will be reissued and
control returned to the task monitor. If
all retries on one path fail, VMSDR will be
called to record hard outboard error sta-
tistics, a message will be written to the
operator, and the IORCB will be reissued on
an alternate path (BUSOUT-ALTPATHS).

A Unit Check - Equipment Check will
cause retries on the same path to be
attempted the number of times specified
separately for reader and punch in the SDT.
In each case, prior to returning to the
task monitor, the Error Recovery in Pro-
gress flag is set in the DEB, the Error
Retry Attempted fiag is set in the IORCB, a
message is sent to the operator, and an
interruption routine is specified with the
SIR macro instruction. The message sent to
the operator directs him to take appropri-
ate corrective action on the reader or
punch. Such action creates an asynchronous
interruption and MSAM Posting is entered at
CZCMG2 where the Error Retry Attempted flag
is set in the IORCB, the virtual storage
IORCB reissued, and the number of outstand-
ing IORCBs incremented by one before
returning to the task monitor.

Where the maximum number of retries have
been done, an alternate path is tried; a
message is written to the operator request-
ing an alternate path, and again MSAM Post-
ing returns until entered as the result of
operator action. In the event alternate
path retry is performed, a hard outboard
error is recorded via VMSDR for the failing
path (ALTPATH3).

Unit Check -~ Data Check occurs when an
invalid card code is detected. This can
occur only on a read command. If the card
is a control card, two flags are set on in
the DEB to indicate that a control card has
been read. 1If the card is not a control

card and the retry option in“the DCH speop-
ties no retries, the pocket option 1n tne
DCH is tested. This determines whether the
Feeder and Stacker Select commund is
changed tc use the stacker specified in the
pocket option or whether the card iu

stacked as if no error occurred. A flag is
set 1in the DEB to indicate that an invalid
card has been read and accepted, a tlag is

set in the virtual storage IORCB to indic-
ate error retry attempted, and the DEB
Error Recovery in Progress flag is set on.
The virtual storage IORCB is reissued at
the next feed, select stacker command with
command chaining suppressed, the number of
outstandirg IORCBs is incremented by one,
and control is returned to the task monitor
(RPBIT4-TESTPOCK~-RETRY2).

If the card is not a control card and
the retry option in the DCB specifies an
unlimited number of read retries, a message
is issued (WTO) informing the operator to
replace the erroneous card for the retry
attempt. Asynchronous procedures are
handled as in Intervention Required, except
that a flag is set on in the IORCB to ind-
icate an error retry was attempted
(CHKCOUNT-SETASYNC) .

Unit Check - Unusual Command Sequence is
caused by a read following a read with no
intervening feed. This condition is allow-
able only if an error retry is in progress.
Processing continues with the next CCW. If
unusual command sequence occurs when an
error retry is not in progress, posting for
an unrecoverable error occurs (RPBIT6}.

A Prior Error Check indicated when sta-
tus bytes showed other than normal comple-
tion is treated as an unrecoverable error
for a reader or punch (TESTEC - UNRERR2).

If a Program Check or Protection Check
occurs on the reader or punch, there is no
recovery procedure. Unrecoverable error
posting is done and, if a protection check,
SYSER is invoked to record a minor software
failure (TESTPGC - TESTPTC - UNRERR2 -
MISERR#4) .

A Unit Exception on the punch should
never occur. If it does, permanent error
posting is done and a minor software SYSER
recorded. A unit exception on the reader
indicates end of file (data set) and normal
completion posting is done. A flag is set
on in the DEB to indicate end of file
(TESTPTC).

e For the printer:

A check 1is made for invalid sense bits
as explained above under Unit Check - Sense
Failure (PRUNITCK).

Section 4: Posting and Check 57

Unit Check - Equipment Check is pro-
cesned similar to equipment check proces-
sing for the reader and punch. This unit
check can be caused for a printer by either
4 hammer check or a buffer parity error
{PRBIT3}.

Unit Check - Code Generator Parity Exrror
causes original path retry to be done the
number of times specified in the SDT. It
occurs only if the code generator storage
is being reloaded for a printer with the
universal character set (UCS) feature. If
retry over the same path is unsuccessful,
an alternate path is requested and a mes-
sage sent to the operator. The error is
recorded as intermittent when successful or
as solid when unsuccessful for a path. The
error is processed the same for each path,
except each alternate path is tried once
(PRBITS).

If Unit Check - Intervention Required is
the error, and the DCB for type is D or S
{that is, form-sensitive}, the operator
will be sent a message to ready the print-
er. The SIR macro instruction will be
issued to handle the expected asynchronous
interruption. The error recovery in pro-
gress flag will be set on in the DEB and
control will be returned to the task mon-
itor. When the operator signals correction
of the error condition by hitting the stop
button followed by the start button, the
asynchronous interruption will occur.
Posting will be entered at its second entry
point (CZCMG2), which was specified in the
Specify Asynchronous Entry Condition macro
instruction ICB. The virtual storage IORCRE
will be reissued beginning with the failing
CCW, the number of outstanding IORCBs
incremented by one, and control returned to
the calling program. For form type-F, a
message is sent to the operator directing
him to mark the error page. The fixed area
of the IORCB is moved from the interruption
Storage area to the DEB page. The address
of the ICB in the DEB page is stored in the
BCB, and the V- and R-con for posting entry
Z are stored in the ICB. The SIR macro
instruction is issued to service the
expected asynchronous interruption, the
€rror recovery in progress flag is set on
in the DEB, and control is returned to the
task monitor. After the asynchronous
interruption occurs, processing is identic-
al to that done for error recovery on form
type F for the printer after an equipment
or data check (INITSEL - PRBIT1 - PTRINT -
SETASYNZ - SETASYNC).

Unit Check - Bus Out is caused by a
parity error on a command (initial selec-
tion) or data (data transfer) byte. Each
path is retried the number of times speci-
fied in the SDT; when the maximum is
reached, the failing path is recorded via
VMSDR, a message is sent to the operator

58 Part I:

about the failure, and the IORCB is reisg-
sued along a new path (PRBIT2 - PRBOUT -
RTRYBOUT) .

It Unit Check - Channel 9 was sensed by
the printer during the previous carriage
motion and no other status or sense bits
are set, processing continues with the next
CCW. If FORTRAN (formerly ASA) or machine
control characters have not been specified
and there was a unit exception, the failing
CCW is changed to a skip to channel 1 and
processing continues. If any other sense
bits are on, no special processing is done
for the chanrel 9 indication (PREIT7 -
UEPRINT -~ NEXTLINE - RETRY3).

Unit Check - Command Reject is processed
for the printer as explained for the reader
and punch above (PRBITO - CMDREJ).

Unit Check - Data Check occurs only with
a printer having the UCS feature when a
code in data storage finds no match with
any code in code generator storage. If
SETUR had not been previously called by the
user to load the buffer, a message is sent
to the operator and an unrecoverable error
is posted. Otherwise, the first time a
data check occurs the buffer will be
reloaded prior to the write retry. Wwhen
the buffer has been successfully reloaded,
the print retry counter is set to a number
specified in the SDT and the failing CCW is
changed to print without skipping, spacing,
or command chaining. A flag is set in the
IORCB to indicate error retry attempted,
the IOKCB is reissued, the number of out-
standing IORCBs incremented by 1, and con-
trol returned to the task monitor. After
the maximum number of retries have
occurred, a message is sent to the operator
indicating task ID and buffer arrangement.
SIR macro instruction is issued to handle
the possible asynchronous interruption from
the operator. Posting is done for an unre-
coverable error and control is returned to
the task monitor.

If the operator wishes to accept the
error and block further data checks, he
will depress the stop and start buttons,
thereby causing the asynchronous interrup-
tion. Posting invoked at its second entry
point, CZCMG2Z, will proceed with the next
line to be printed, except that the first
CCW to be issued will be a block data com~
mand (UNRERR-RLDBFR-RETRY4- TSTCNT-ASKOPER) .

A prior Error Check (not normal comple-
tion) is treated as an unrecoverable error
unless Form-D printing (that is, a dump) is
in progress. If FormD printing is in pro-
gress, MSAM Posting assumes the user is
willing to have the job continue; proces-
sing continues to test for program check,
protection check, or unit exception {(TESTEC
- UNRERKZ2).

Access Method for BSAM, MSAM, TAM and IOREQ

If a Program Check or a Protection Check
on the printer occurs, there is no recovery
procedure. Unrecoverable error posting is
done and unless FORTRAN (formerly ASA) or
machine characters were not specified on
the program check, SYSER is invoked to
record a minor software failure (TESTPGC -
TESTPTC - UNRERR2 - MISERRU4).

A Unit Exception on the printer indi-
cates the end of a page has been reached
and a skip to the next page is required.

If FORTRAN (formerly ASA) or machine con-
trol characters are in use (meaning the
aser handles his own skipping), the current
[ORCB will be reissued at the next CCW.

The number of outstanding IORCBs is incre-
mented by one and control returned to the
cask monitor. If FORTRAN or machine con-
trol characters are not in use, a skip to
channel 1 command will be inserted over the
last executed CCW, the virtual storage
IORCB will be reissued beginning with the
skip to channel 1, the number of outstand-
ing IORCBs is incremented by one and con-
trol is returned to the task monitor
(UEPRINT - NEXTLINE - RETRY3).

REMOTE JOB ENTRY DEVICES

For remote job entry devices (reader or
printer; a punch is not supported), normal
170 completion results in processing ident-
ical to that for central installation
devices plus several additional processes.
3uffer input received from a reader is
checked for the presence of an ETX charact-
2r; where found, it indicates end-of-data-
set (end-of-file) and a flag is set. Where
unissued IORCBs are to be reissued as the
result of a prior unsuccessful completion,
synchronization of ACK characters is
assured for the reader before an IOCAL is
issued (TESTRJE - SETENOF - REISS1 -
CHECKACK) .

in general, MSAM Posting performs only
posting functions for remote job entry
devices. Necessary error recovery proce-
dures are performed by the resident super-
visor. MSAM Posting error processing for
both the remote reader and printer is
explained below.

Channel control check, interface control
check, and channel data check errors are
recorded via VMER, CHKINTM is called if
intermittent errors are present, and a mes-
sage is written via WTO to the TSS operator
informing him of the permanent channel
error (NORMRJE - TESTICC - TSTCDC).

Unit check - sense failed error is rec-
orded via VMSDR, permanent error is posted,
CHKINTM and WTO are called (TSTDUC).

Unit check - time out error is recorded
via VMSDR, permanent error is posted,
CHKINTM and WTO are called if it is a
‘should not occur' exror (IORJESN is on).
If it is a 'should occur' error (IORJESN is
off), then the operation is set up to be
handled by an asynchronous interruption
(TOCHK) .

Unit check - intervention required
results in the first byte of the DECB being
set to hex 14 so that BULKIO may reinitia-
lize the job (IRCHK).

Unit check - lost data, data check, or
overrun errors are recorded via VMSDR, per-
manent error is posted, CHKINTM and WTO are
called. If IORJESN is on, subsection 2 of
the error counter tables is used for reco-
rding the error. If it is off, subsection
1 is used (DATACHK).

Unit check - busout, equipment check, or
command reject errors are recorded via
VMSDR, permanent error posting is done,
CHKINTM and WTO are called (BOCHK -
EQUIPCHK - COMMREJ).

If no sense bits were found on, a minor
software SYSER is called.

Unit exception - first, intermittent
errors are recorded using the CHKINTM sub-
routine. Then, if receive mode, the first
byte of the buffer is checked for an EOT.
(An BPOT will be found if the operation was
completed in the previous buffer but there
was no room to write the EOT, or if a card
jam occurred just as the buffer was being
completed.) If there is an EOT, the
DCBENOF flag is checked, and if on normal
completion is posted. If off, it indicates
either a card jam or the *'STOP' button was
pushed. The operation will then be set up
to be handled by an asynchronous interrup-
tion (SKPINTM - TSTEOF - CHKSAIN).

If the first byte of the buffer does not
contain an EOT, then the data buffer being
read at the time of the interruption is
checked for ETX oxr ETB. This check will be
made at the middle of the buffer (byte 83)
if IORJEOC is on, or at the end of the
buffer (byte 167) if IORJEOC is off. If an
ETX, the operation has completed normally,
DCBENOF is set on, and normal completion is
posted. If ETB is found, either a card jam
has occurred or the STOP button has been
pushed. Setup will be made for an asynch-
ronous interruption. If neither ETX or ETB
is found, a minor software SYSER is posted
{SETEOF - CHKSAIN - RJEMSER1).

For unit exception transmit mode, incor-
rect length is checked. 1If off, normal
completion is posted. If on, either a
paper jam exists or the printer was stopped
by pushing the stop button. 1In either case

Section 4: Posting and Check 59

the operation is set up for an asynchronous
interruption (CHKFORM).

Incorrect length errors are recorded via
VMER, any intermittent errors are recorded
and a message is written to the operator
via WTO informing him of the permanent
error {(CHKIL).

Control unit end, program check, chain-
ing check, and protection check errors are
posted as permanent errors, intermittents
are recorded, and a message is written to
the operator via WTO (CUEND - CHAINCHK).

Attention, status modifier, and busy
errors are handled the same as incorrect
length (D9%) (BUSYCHK - ATTNCHK ~ STATMOD).

If none of the status bits are found on
a minor software SYSER is called
(RIJEMSER2).

TAM Posting Routine (CZCZA)

After the termination of a TAM Read/
Write initiated I/0 operation, control is
passed by the task monitor to TAM Posting
to process this I/0 interruption. TAM
Posting analyzes the interruption data to
determine the action to be taken. It also
examines the input message content to
determine the buffering technique to use
and if user errors have occurred. Wwhen
errors occur, both recovered and unrecover-
able error data is recorded. {See Chart
CD.)

Functions provided by TAM Posting are:
¢ Posting of completed I/0 actions.

* Translation and movement of user data
on read operations.

* Continuation of TAM Read/Write opera--
tions which involve multiple IORCB
generation.

e Posting of attention signaling during
input or output operations while the
terminal is transmitting or receiving.

e Detection of errors or exceptions ter-
minating the channel program.

* Decoding of errors or exceptions and
initiating possible recovery action.

¢ Posting of error or exception data when
recovery has not been requested or the
error is nonrecoverable.

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Point: CZCZAl -- Entered via type-1

linkage.

60 Part I:

Input: The IORCB and the ISA contain
information reiative to the condition under
which the I/O operation was terminated.

Data Reference: CHAISA, CHAIOR, CHADEC,
CHATOS, CHADCB, CHADEB, CHASDA.

Modules Called:

GETBUF (C2ZCMA) ~- Get a buffer area.

WRITE (CZCYM) -- TAM Read/Write.

WTO (CZABQ -- Write to operatcr.

RESET (CEAAH) -- Permit task to access 1/0
device.

IOCAL (CEAAD) -- I/0 call.

VMER (CZCRX) -- Virtual memory error
recording.
VMSDR (CZCRY) -- Virtual memory statistical

data recording.

SYSER (CERIS) -- System error.

Exits:
Normal -- Return to the task monitor.
Error -- SYSER is called in the case of an

undefined interruption, no SDAT entry,
an undefined inboard error, or no sense
data.

Operation: TAM Posting is called by the
supervisor as the result of an I/0 com-
pleted interruption. It saves the general
registers and then initializes them with
pointers to the IDA, DECB, DCB, TOS, and
IORCB buffer and CCW list.

TAM Posting then decodes the reason for
the interruption of the I1/0 operation (see
Figure 7). On determining that the inter-
ruption does not reflect a normal comple-
tion, a branch is made within TAM Posting
to initiate the appropriate recovery proce-
dure. If this is not possible, errors or
exceptions are analyzed, and flags are set.

The sequence to determine the interrup-~
tion type follows:

e TORCB flags - The flags in the IORCB
are checked first to determine if ther
was a HALT I/0 or a START I/0 failure.
An exception condition detected by ICS
is indicated by setting flags in the
IORCB.

¢ Inboard failures - The inboard (chan-
nel) type of failures are tested first
as a group (incorrect length, program
check, protection check, channel data
check, interface control check, chain-
ing check). If any one is found set,
control is transferred to the inboard
failure analyzer.

Access Method for BSAM, MSAM, TAM and IOREQ

Decode Exception Analysis
fnterrupt
Normal Completion I CSW Reflected IORCB Reflected Other
1 i 1 1 ¥ 1)
CCW Troce List inboard Qutboord 10 Machine HIO User SYSERR
Data-in Processor on Doto-in Failure Failure Check Coued
Logical Function 1
Buffer Analysis 1
1
Translate Reod Data Channel I Unit e.g.,
. f
Oota Movement Type Unit Exception i(i)uv:;un
Check
Post Control With
Sense
Data
Analysis
Conclusion Recovery ?ecording of Recovery
Housekeeping Mechanism emporary Routines
Foilures
Abort Situation
Posting DECB Recording of Reiniticlize
Solid Failures IORCB
1OCAL

Figure 7. TAM Posting: Normal Completion and Exception Analysis Paths

« Outboard check or exception - The out-
board failures (unit check and unit
exception) are tested individually. If
either is set, control is given to the
appropriate outboard failure analyzer.

e Normal completion - The channel end
(CE), device end (DE), and program con-
trolled interruption (PCI) bits are
tested. The detection of any CE, DE,
or PCI bit being set will transfer con-
trol directly to the CCW trace list.

e Undefined operation - If there was no
detected error or no normal condition,
TAM Posting identifies this I/O inter-
ruption as an undefined operation and a
SYSER is declared.

The CCW trace list is then traced
directly when normal completion was decoded
from the interruption. TAM Posting per-
forms this CCW trace by processing each CCW
in the CCW list. This CCW list was just
executed previously by IOS and is returned
by I0S in the IORCB area of the ISA. For
dynamic buffering the length is obtained
from TOS and is indicated in Table 17.

Table 17. TAM Posting: Terminal Length

Statistics
r - T R | e - 3
| Terminal |Standard|Maximum Single Input |
| Type | Length | Record Buffer |
- + + - 4
|IBM 1050 | 130 | 260 {
| | | |
{IBM 2741 | 130 | 260
| | I !
{IBM 1052-7} 130 | 260
| | |
{TTY MOD 35| 72 | 1ub
[— -1 L —d

TAM Posting uses the logical function

list kept in TOS associated with this IORCE

for determining necessary processing
requirements for each CCW. 1in legical

function list contains a one byte code for
each CCW in the channel program. For each

CCW and its associated logical function

code, the IORCB buffer pointer is stepped
to the proper buffer location and the CCW

list pointer is stepped to the next CCW.
TAM Posting then processes the next logi
function until the entire list has been

Section 4: Posting and Check

cal

61

processed. Processing then continues with
post control. If the Data-In logical func-
tion code is present it performs the pre-
vious action and also branches to the Data-
In processor. This Data-In assures that a
user buffer area is available, and trans-
lates and moves data to this buffer area
when required. It is the initial Data-In
CCW, in the CCW trace list, that determines
the user buffer area requirements.

The Data-In processor is entered if
there is a Data-In logical function :n the
CCW list. The Data-In processor coding
determines input buffer length, detemmines
input buffer processing requirements, tran-
slates input data when reguired, moves data
to user buffer area, and maintains input
data bookkeeping.

The user may supply the necessary buffer
area, by specifying in the TAM Read/Write
macro instruction, the address and length
of this area. The user may also specify,
in other parameters in this DECB or in the
DCB, that dynamic buffering 1is requested.
(See Table 18.)

If TAM Posting issues the GETBUF macro
instruction to obtain dynamic buffer areas,
the user must return these buffer areas,
when processing of the input data is
complete.

The input buffer length and processing
requirements are determined by doing a
translate and test of the input data. The
data in the transliate and test table (ZAT-
DIT) contains only one functional charact-
er, at present, which senses the end of the
input data record. The ZATDIT functional
character code is used to do a table loockup
for the processing routine to be called.
The data in the processing control table
(ZATDIC) is provided for this purpose and
contains the location of the end-of-record
processor. This end-of-record processor
determines if translation of the input data
is required and translates the data to
EBCDIC when necessary. The translation
table address is obtained from TOS. If the
tield is zero, no translation is required.

One error condition may be determined as
a result of the translate and test. This
is an input buffer overflow and exists when
the terminal operator inputs a single reco-
rd length greater than the specified length
for the terminal. This condition will
cause the Master Exception flag in the
Posting flag field of TOS to be set, and
the Input Buffer Overflow flag bit to be
set in the flag field of the DECB. When
the translation requirements are completed
the message is checked for the end of line
(EOL) sequence of the input record (illus-
trated in Table 19).

It is determined that the terminal has a

specified EOL sequence when the EOL
sequence count in TOS is other than zero.

62 Part I1:

Table 18. TAM Posting: Specification of
User Buffer
| St Yy T B Sttt hl
| DCB i DECB | Comment s
prmm e et S y
|Option | L=C |Conversational move, |
| ignored | }dynamic buffering i
		length is twice
		standard terminal
i	length.	
G $—mm e		
Option	A=S	Dynamic buffering.
ignored	L=N	Length is stated
		value=N. i
S e 1		
L=N	A=S	Dynamic buffering.
	L=5 {Length is stated i	
		value=N (from DCB).
po e m o oo R —		
BUFTEK=DYN	L=5 {Dynamic buffering	
		{from DCEJ. }
L=N	{Length is stated !	
i i fvalue=N (from DCB).		
————————— e O —- 1		
BUFTEK=DYN	L=N	Dynamic buffering
}	{(from DCB).	
Length		Length is stated
{ignored {	value=N.	
et — 4 S 4		
{Option	A=address	Buffer address is
ignored		indicated.
i jL=n {Length is stated		
i		value=N. H
;, i i p— “1!		
L - LENGTH]		
L=S - implies length in DCB.		
!		
Dynamic Buffering - Buffer obtained by		
JPOSTING and address passed to user in		
DECB. A user is therefore responsible		
jfor returning these dynamic buffers by		
{using a FREEBUF.		
e e e - ———— }		
Table 19. TAM Posting: Expected EOL		
Sequence		
[T T T e e e e e B A 1		
{ Terminal { Seguence {		
————————————————————————— B B g		
{IBM 1050	CR, B i	
i i		
[IBM 2741	CR, C	
I !		
{IBM 1052-7	NONE	
	i	
TTY MOD 35	CK, L.F., XOFF]	
O prm e m oo e :		
CR - Carriage Return		
i]	
B - End of Block i		
	i	
C - End of Transmission] }		
	{	
jL.F. - Line Feed		
I]	
XOFF -~ Transmitter Off		
L e e e . o e e S . o e e et e o e T e A 4

Access Method for BSAM, MSAM, TAM and IOREQ

When a successful comparison cannot be made
the device type code is obtained from the
TOS and used to do a table lookup for the
abnormal EOL routine for that device.

The IBM 1050 and 2741 use a ccmmon
Abnormal End of Line routine and it is
entered whenever the ending sequence is
other than the expected. The routine will
determine one of four possible ccnditions:

1. B--EOB character only -- Normal allow-
able ending which may indicate card
input of inter-line record formatting.
Detection of this condition will inhi-
bit the placing of the New line code
character in the data record and will
return to the normal program flow.

2. Last character received is C~-EOT -~
If this character is received the Unit
Exception flag in the Post Flag field
in the CHATOS is tested, and if set,
the Message Complete flag will be set
and the return is to normal Data-In
processing flow. If the Unit Excep-
tion flag is not set, the Attention on
Read and Master Exception flag are set
in the Posting flag field of the CHA-
TOS and the Attention flag bit in the
Pre-Post Data field in the CHATOS is
set. Control is then returned to the
normal Data-In processor flow.

3. Neither B nor C -- The Master Excep-
tion flag in the Posting flag field of
CHATOS is tested. If on, control is
returned to the Input Data processor
to allow the record in error to be
moved to the user buffer area.

4. If the Master Exception flag is not
set, an undefined system error has
occurred and control is given to the
undefined erroxr routine. Should the
record length prove to be greater than
the user the user buffer remaining
count field, that portion of the reco-
rd equal to the user puffer remaining
count is moved to the user buffer
areas, the User Buffer Overflow flag
in the flag field of the DECB is set,
and the master exception flag bit in
the posting flag field of the TOS is
set. Normal processing continues with
control being returned to the CCW
trace list as if no user buffer over-
flow had occurred.

If the FEOL sequence comparison is suc-
cessful the first character of the EOL
sequence is overlaid with an EBCDIC new
line (NL) character and the record length
is adjusted to include the text plus the NL
character. This record length is then com-
pared to the user buffer remaining count
tield of ToS. 1If it is equal or low, the
record is moved from the input buffer to

the user buffer area. The user buffer
pointer, user buffer remaining count, and
input character count fields in the TOS are
updated. Control is then returned to the
CCW trace 1list.

The CCW trace list coding continues for
each logical function byte until the entire
CCW list has been processed. When the last
CCW is processed, we continue processing
with the proper post contrcl coding as
determined by the option type-code
reference in the post control table.

The functions of the post control rou-
tine coding are to determine the proper
posting and control for:

®» Read operation entry

e Write operation entry

® Write with response entry
e Control order entry

If a read request is ocomplete within
this IORCE, the area and length are moved
to the DECB and common DECB posting con-
tinues. 1If the read is not complete, TAM
Reads/Write is called.

If a write is complete within this
IORCB, common DECB posting continues. If
the write is not complete, TAM Read/Write
is entered as a subroutine.

If the write with response is complete
within this IORCB, the data in the buffer
bit in the Posting flag field of TOS is
tested. If set, the Message Complete flag
is set in the Post flag field and control
is transferred to post control read. If
the data in buffer bit is not set, enter
TARM Read/Write is entered as a subroutine.

If write with response is not complete,
TAM Read/Write is entered as a subroutine.

If a control order entry, common DECB
posting continues. Common DECB posting
ends post control by making an initial test
of the Master Exception flag in the Posting
flag field of TOS. 1If set, the ECB field
of DECB is posted complete with error and
the synad request is set in the DECB flag
field. If the Master Exception flag is not
set, the ECB field of DECB is posted com-
plete without error and the prepost data
field is moved tc the DECS flag field.

Common DECB posting then moves CSW and
sense data from ISA to DECB. If the Master
Exception flag is set, TAM Posting does not
allow entering TAM Read/Write as a subrou-
tine but continues with common DECB

posting.

Section 4: Posting and Check 63

After completing common DECR posting the
housekeeping completion routine coding is
executed. The housekeeping function
includes:

¢ Recording unrecoverable error data
¢ Recording recovered error data

¢ Clearing error counters and error data
fields

® Preparing line on abnormal end and
return

s Issuing status of IORCB and return

® Setting up normal veturn to task
monitor.

Note that TAM Posting does not issue an
ABEND. On determining any exception or
error condition, the appropriate informa-
tion is posted in the DECB and at the prop-
er time a return 1s made to Task Monitor.

Only if TAM Posting cannot determine a
path to follow will it issue a SYSER.

TAM Posting provides exception analysis
erroxy decoding and recovery actions. The
processing of all exceptions except atten-
tion interruptions posts all data to the
user, whenever error recovery is not indi-
cated or possible. The following flags may
be set in TCS to communicate unrecoverable

termination status to the user via the DFECE:

e Unit Exception flag - set when a func-
tion is terminated by unit exception.

® Master Exception flag - set whenever an
exception interruption has terminated
the action.

s Abort flag - set whenever maximum error
recovery attempts have been
unsuccessful.

® Attention flag -~ set whenever attention
signalling is detected during a read
type operation.

® Recovery in Progress flag - set whenev-
€Y an error recovery action is
initiated.

An example of Start I/0 (SIO) failure
foliows. The SIO Failure flag in the IORCE
15 interrogated by the Define Interruption
routine, If the flag is found to be on,
transfer is made to the SIO-HIO failure
pProcessor.

The status in the CSW is then interro-
gated to see if a unit check or unit excep-
tion has occurred. 1If either bit is on,
control is turned over to the proper pro-

64 Part I:

cessor. If neither bit is on, a message is
sent to the system operator informing him
of the Start I/0 failure and the associated
symbolic device.

The ABEND Required and SYNAD Requested
flags are set in the flag bytes of the
DECB. The ECB field of the DECB i3 set to
indicate ®complete with error®. A pranch
to the Housekeep and Return subroutine
occurs.

The two types of ocutboard failures are
unit check and unit exception. Each has
its own control routine coding whose pur-
pose is to determine the recovery action to
be initiated. Each of the recovery rou-
tines is ccded to operate for unique combi-
nations of conditions.

As an example of error recovery on unit
check, TAM Posting starts with the inter-
rupted CCW obtained through the data pro-
vided in the ISA and the IORCB located in
the ISA. The sense byte bits in the ISA
are then tested in a predetermined
priority.

When a test is found to be positive, a
counter located in TOS which represents
that sense condition is stepped and tested
for a maximum count. Refer to Table 20 for
CSW status and sense data typical ‘maximum
exception retry' counts.

When any sense condition retry counter
is stepped to maximum, the Abort flag is
set to indicate an unrecoverable condition,
the failures are recorded, and TAM Posting
branches to c¢onclusion housekeeping. 1If it
is a recoverable condition the internal
recording saves pertinent error data in
TOS. After this recording, the Unit Check
Director routine coding is entered, to
access the Unit Check Recovery routine to
be initiated as determined by the interrup-
tion conditions.

The Reinitialize IORCB subroutine is
provided to be used by all unit check
action routines. Prior to entering, all
altering of the channel program and buffer
data is completed. This routine initia-
lizes all relative addresses in the IORCB,
sets the necessary flags, and issues the
IOCAL macro instruction. TAM Posting then
sets up for a return to task monitor.

The following describes typical unit
check recovery routine coding provided:

Retry Full IORCB on System Exrror: This
action is used where the channel program
has been terminated in such a way as to
require a retry of the full program or
posting of a system error which is unrecov-~
erable. The routine will first test the
Abort flag in TOS. If set, it will set a

Access Method for BSAM, MSAM, TAM and JIOREQ

-~

TAM Posting: CSW Status and
Sense Data Typical Maximum
Exception Retry Counts
(Extracted from CHASDT)

B i

! CSW Status

Table 20.

|Bit No. |Retry Count|

—————————————————— o St
{Attention 32 | N.A. |
|Status Modifier | 33 { N.A. |
{Control Unit End | 34 | N.A. |
|Busy 1 35 | N.A. |
{Channel End | 36 | N.A.
|Device End | 37] N.A. |
|Unit Check | 38] 3

jUnit Exception | 39 i 3

{pCI ‘ | 4o] N.A. |
jIncorrect Length | 41 | 3 |
jProgram Check j 42 | 3 |
{Protection Check | 43 i 3]
iChannel Data Check | b | 3 |
iChannel Control I as | 3 |
| Interface Control] ué | 3 i
{Chaining Check | 47 | 3 i
{Consecutive Errors | | 10 |
e - fommmmee pommmm —1
{ SENSE_DATA | | i
jCommand Reject] 0 i 3
{Intervention Required]| 1 | 3 |
[|Bus Out] 2 | 3 |
| Eguipment Check | 3 | 3

{Data Check | 4 | 3 |
{Overrun i 5 | 3 |
{Receiving | 6 | 3 |
|Time Out | 7 | 3 |
L U i) 4

System Error and ABEND Requested flag in
the DECB and enter the CCW trace list rou-
tine. If the Abort flag is not set, the
routine will set the Retry in Progress flag
in TOS. The Reinitialize IORCB routine is
then entered.

System Error Retry from Interrupted CCW:
This action is used whenever a system error
has occurred and it is necessary to restart
the program from the interrupted CCW. The
sbort flag in TCS is tested. If set, the
routine will set an error condition in the
DECBE and enter the CCW Trace List routine.
If abort is not set, the Retry in Progress
flag will be set. The relative location of
the interrupted CCW is saved and the Rein-
itialize IORCB routine is entered.

Record Only: This action is used when an
error has occurred which will not effect
channel program operation, but must be rec-
orded as a system history. It also may be
used when the terminal is not equipped with
error correction. A branch occurs to the
CCW Trace List routine.

Unit exception, for example, can be
caused by a negative response from the
1050, either during addressing or polling.

IOREQ Posting Routine (CZCSE)

After a system interruption which occurs
at the completion of an IORFQ initiated I/0
operation, control is passed by the Task
Monitor to IOREQ Posting to process thias
I/0 interruption. The address ot IOREQ
Posting is specified by the posting address
constants in the IORCB.

%

IOCREQ Fosting analyzes the interruption
data to determine the action to be taken.
It then posts the normal or abnormal com-
pletion code in the DECB, allowing the
Check routine to later take action based on
these codes. IOREQ Posting is executed in
privileged mode, with all other task inter-
ruptions masked off. (See Chart CE.)

Attributes: Reentrant, resident in virtuail
storage, closed, nonrecursive, read-only,
privileged.

Entry Point: CZCSE1l -- Entered via type-l
linkage.
Input: ©None. Information relative to the

conditions under which the I/0 operation
was completed is in the IORCB and the ISA.

Data References:
CHADCB, CHAIOR.

CHAISA, CHADEC, CHADEB,

Module Called: Reset (CEAAH) -- Resets
error flag so that task can access 1/0
device.

Exits:
Normal -~ Return to calling program.

Error -- ABEND macro instruction.

Operation: IOREQ Posting initially saves
the general registers. A check is made to
verify that the IORCB has been executed
{that is, the channel program has been
attempted).

If the IORCB was not execunted, a check
of the Error flag for the corresponding DEF
(pointed to by the IORCB} is made. If the
error flag is set, an intercepted condition
is set in the ECE (pointed to by the IORCBE)
of the DECB. The allowed IORCB count field
in the DEB is decremented by 1 an a return
to task monitor occurs. If the error flag
is not set, an exit to ABEND occurs.

If the IORCB was executed, the CSW is
moved to the DECB, the ISA sense informa-
tion is moved to the DECB, the allowed
IORCB count in the DEB is decremented by 1,
and the input data in the IORCB data buffer
area, if buffering is used, is moved to the
data area in the user virtual storage
pointed to by the DECB.

Section 4: Posting and Check 65

If START I/0 failed ‘Complete with
Error' is posted, DECBSF is set to show SIO
failure, SYNAD is requested, and the IORCB
count decremented. The return code is set
to zero and a return to the task monitor is
effected.

The CSW bits are examined and, depending
on their setting, normal or error comple-
tion is posted. If the CSW=0, ABEND is
requested and error and permanent error
flags set in the DEB. IOREQ Posting does
not perform any error recovery.

For normal completion, "normal comple-
tion® is posted in the ECB of DECB, and a
return to the task monitor occurs.

For abnormal completion, “complete with
error” is posted in the ECB of DECB, a
request is set for SYNAD in DECB, the error
flag is set in DEB, and a return to the
task monitor occurs.

Check Routine {(CZCRC)

The Check routine is entered as the
result of the CHECK macro instruction that
a user issues to ensure the completion of a
previous READ or WRITE macro instruction.
To determine completion or other results,
Check examines the DECB. SAM Posting and
Error Retry will have posted information in
the DECB if the I/0 operation is complete.
If not complete, Check awaits completion.
on completion {successful or otherwisel,
normal return, an ABEND, or set-up for en-
try to a user's SYNAD routine occurs,
depending on switches set by SAM Posting
and Error Retry. Check also calls SAM
Mainline EOV for necessary end-of-volume
processing. If end of data set is encoun-
tered, Check sets up entry to a user's
EODAD routine before returning to the
caller.

Attributes: Reentrant, resident in virtual
storage, closed, privileged, nonrecursive.

Entry Point: CZCRCS -~ Entered via type-1M
or type-2 linkage.

Input: Register 1 contains the address of
the DECB to be checked.

Data References:
CHADCB.

CHADEC, CHADEB, CHASDA,

Modules Called:
SAM Mainline EOV (CZCXE} -- SAM EOV main-
line processing.

SAM Read/Write (CZCRA) -- SAM Read/Write.
AWAIT (CEAP7) ~-- Await an interruption.

TWAIT (CEARO) -~ Terminal I/0 wait.

66 Part I1:

Exits:
Normal -- Returns to the calling program
with zero in reqgister 15.

Other conditions --

-

e If a SYNAD condition, returns with:

Register O - DECB address
Register 1 - B8-bit SYNAD code
Register 15 - Addresa of parameter

list containing usar's SYNAD V-con
and R-con addresses.

e I1f an EODAD (end of data set) condi-
tion, returns with:

Register 1 - DCB address

Register 15 - Address of parameter
list containing user's EODAD V-con
and R-con addresses.

e ABEND occurs if EODAD or SYNAD exits
needed but not provided. Requested by
SAM Posting and Exror Retry. I/0
requests checked out of sequence.

Operation: If the In-Use flag in the DECB
is not on, Check has been entered to check
a DECB for which no I/0 is outstanding.
Therefore, control is immediately returned
to the calling routine.

When the DECB is in use but the I/0
operation is not complete, the AWAIT macro
instruction is issued to wait for the
expected 1/0 event to complete.

when the I/0 event has occurred, the
DECB is checked for errors. The task will
be abnormally terminated when the SYNAD cr
EODAD exit is to be given control and it is
not supplied.

Note: When an intercepted DECB is checked
and it has an end of volume request posted .
in it, end-of-volume processing is per-
formed as explained below. However, if the
intercepted DECBE has no end-of-volume requ-
est this means that the I/0 associated with
the DECB was never attempted. Therefore,
Check links to the Read/Write routine to
reissue the I1/0 request. Check waits until
this request is complete before doing any
other processing.

If complete with errors is posted, and
if there is a unit check caused by reading
backwards into a load point, the end of
volume processing is performed as explained
below.

If the DECB is marked complete with
errors, and there was no read backward into
load point, this means that an 1/0 error
has occurred, and the system retry proce-
dures cannot correct it. The Check routine
first tests the ABEND bit (in the DECB), if

Access Method for BSAM, MSAM, TAM and IOREQ

-

the data set is sequentially organized. It
on, this means that the error 1s catas-
trophic, and the task cannot continue.
ABEND is then called. If the ABEND bit is
off, then the SYNAD request flag (in DECB)
is tested, and the user's SYNAD exit is
entered. If SYNAD is not on, a normal
return is given tc the user.

If the data set 1s not sequentially
organized, the Check routine proceeds as
described above for the case in which the
ABEND bit is found off.

tnd-of-Volume Processing: Check calls the
Mainline EOV routine which performs various
end of volume processes and will do volume
switching if necessary. When control
returns to Check, if the end of volume
corresponded to end of data set, the user's
EODAD exit is set up (if supplied). When
the end of volume condition does not corre-

spond to end ot data set, the read reauest
DECR which caused the FOV request 1o
restarted. Should 1t be a write request
DECB which causes the EOV condition, a
normal return is made to the calling rou-
tine with the DECB marked “"Complete, No
Errors"”.

Note that when conditions arise which
require a branch to SYNAD or EODAD, the
Check routine only sets a pointer to the
R-con and V-con of that routine in register
15, and returns to the calling program.

The point returned to will be within the
expansion of the CHECK macro instruction.
If general register 15 is zero, the next
sequential instruction after the expansion
should be given control. If non-zero, the
succeeding instructions of the expansion
must set up a type-1 linkage with the supp-
lied R- and V-type address constants.

Section 4: Posting and Check 67

SECTION 5: CLOSE

CLOSE PROCESSING

The following routines describe the
CLOSE processors for SAM, MSAM, TAM, and
IOR, as well as Close Common and MSAM
Finish.

Close Common Routine (CZCLB)

The Close Common routine will logically
disconnect the data set from the problem
program, close the data control block, and
relingquish main storage. It then branches
to the appropriate access dependent close
routine to complete the closing. (See
Chart DA.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged rou-
tine, public.

Entry Point: CZCLBC -- Entered by type-1
or type-2 linkage.

Input: Register 1 contains the address of
the CHAGSM table. The CHAGSM table is
generated by the expansion of the CLOSE
macre instruction and consists of one
double word entry for each DCB {and its
associated data set) to be closed.

Data References:
CHADER, CHADHD.

CHAGSM, CHADCB, CHATDT,

mModules Called:

SAM Close (CZCWC) -- SAM close.
TAM Close (CZCYG) -- TAM close.
MSAM Close (CZCMI) -~ MSAM close.
IOR Close (CZCSD) -- IOR close,
VAM Close (CZCOB) -- VAM close.

VMA (CZICGA) ~ Free virtual storage.

Exits:

Normal -- Return to the calling program.
Error - - ABEND macro instruction.
Operation: This routine performs close

processing only if the DCB to be closed is
open. 1f the close is temporary, the numb-
er of times the data set has been open is
not decremented as is the case in a normal
close.

Close Common then transfers controcl to

the appropriate access dependent close rou-
tine. When the access dependent close rou-~

68 Part I:

tine returns, all storage assiqnéﬁ to the
DCB is released via FREEMAIN, unless the
close is temporary in which case the
assigned stcrage is not released. The DCB
is restored to its pre-open condition. If
this is not the last DCB to be closed,
CHAGSM points to the next DCBR to be
processed.

SAM Close Routine (CZCWC)

Called by Close Common, SAM Close posi-
tions the data set volume, releases storage
allocated for the DEB, disconnects the DEB
from the chain of DEBs, and returns unused
DA extents to external storage (Chart DB).

Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.

Entry Point: CZCWC1 - Entered by type-1

linkage.

Input: Register 1 contains the address of
the DCB. The SAM communication block
(CHASCRB) is defined in the PSECT of SAM
close and contains three temporary control
blocks - DCB, DEB, and DEC - which are used
during the closing process tc pexform label
processing.

Data References: CHASCB, CHADCH, CHADER,
CHATDT, CHASDA, CHADEC.

Modules Called:
Tape Positioning (CZCWP) -- Tape
positioning.

User Prompter (CZCTJ) -- Communicate with
user.

VOLCVT (CZCWV) ~- Volume address convert.

VMA (CZCGA) -- Free virtual storage.

GIVBKS (CZCEG) -- Release unused SAM
external storage.

Control (CZICRB) ~- Magnetic tape
positioning.

Mainline EOV (CZCXE) -~ SAM mainline EOV

processor.
SETDSCB (CZCXS) ~-- Set DSCB.
QSAM (CZCSA) -- To handle end-of-volume
condition.
AWAIT (CEAP7) -- Await an interruption.

Access Method for BSAM, MSAM, TAM and IOREQ

" turned off.

Exits:

Normal -- Return toc calling routine.
Error -- Via ABEND.
Operation: 1f the device indicated in the

DCB 1s direct access, the T-Close flag is
DA data sets may not be tem-
porarily closed.

The SAM control block (CHASCB) is
initialized by zeroing out the variable
portion, storing pointers to the DCB, DEB,
and JFCB into it, and initializing the tem-
porary DCB and DEB.

The QCLOSE subroutine is bypassed if
neither GET nor PUT is indicated in the
DCB. If the data set being closed has been
processed by QSAM, QCLOSE, an in-line sec-
tion of SAM Close, is entered to perform
functions unique to the closing of a QSAM
data set. Control is given to the TREOV
section of QSAM, which checks for outstand-
ing read requests and flushes any which
exist, or writes out any buffer which has
been partially or completely filled, but
not yet written out. (See the QSAM section
of this publication for a description of
TREOV.) A FREEMAIN macro instruction is
next issued to release the storage obtained
for the work area and buffers by QOPEN. At
this point, QCLOSE processing is complete
and normal processing of SAM Close
continues.

If the device is a magnetic tape drive,
the common portion of the input DEB is
copied into the common portion of the tem-
porary DEB, and a pointer to the temporary
DCB is stored into the temporary DEB.
Fields in the temporary DCB are set so it
may be used for label processing.

SAM Close uses the AWAIT macro instruc-
tion to make sure that all user I/0 is com-
plete before the data set's close proces-
sing is continued. Incomplete input opera-
tions will be purged by SAM Close.

Unused extents are released, via GIVBKS,
if the following three conditions are met:

a. device is direct access
b. at least one full track is unused

c. release of unused extents is specified
in the JFCB.

The Mainline EOV routine is then entered
to complete end-of-volume processing if the
last 1/0 operation was a write. When con-
trol is returned to SAM Close, and if the
device is a magnetic tape drive, the tape
volume is positioned as specified in the
close options by use of the Control
routine.

MSAM Finish Routine (CZCMH)

MSAM Finish is used to complete proces-
sing for a data group mounted on a unit
record device. MSAM Finish can also be
used to signal the end of the current data
group without closing and reopening the DCB
for the next data group. {(Chart DC.)

Attributes: Privileged, reentrant, read-
only, public, system, nonrecursive.

Entry Points:
CZCMH1 -- Primary entry point via type-1 or
type-2 linkage.

CZICMH2 -- Asynchronous interruption entry
point via type-1 linkage.

CZCMHB3 -- Synchronous interruption entry
point via type-1 linkage.

Input:
For entry at CZCMH1, register 1 contains
the address of the DCB.

For entry at CZCMH2, register 1 contains
the address of the ICB.

For entry at CZCMH3, the ISA contains the
IORCB.

Data References: CHADCB, CHADEB, CHADEC,
CHAIOR, CHAISA, CHADBP.

Modules Called:

WTO (CZABQ) ~-- Write message to operator.

SIR (C2CJS) -- Activate an interruption
routine.

DIR (CZCJD) -- Delete an active interrup-
tion routine.

Reset (CEAAH) -- Reenable a device after
I1/0 error.

Exits:

Normal ~-- For CZCMH1 return, register 15
contains one of the following return
codes:

'00* completed successfully.
‘O4°* Incomplete.

'08*' Complete with I/0 error; if PUT,
register 1 points to failing reco-
rd, register (¢ points to user
DECB.

For CZCMH2 and CZCMH3 return, register
15 contains zero.

Error -- Abnormal termination via ABEND

macro.

Section 5: Close 69

operstion: In order to avoid an automatic
wait in MSAM Close, the FINISH macro should
be issued and subsequently reissued by the
user until its return code indicates com-
pletion. When the FINISH macro is issued
by the user or by the MSAM Close, CICMH1 is
entered. Following an asynchronous inter-
ruption (caused by operator response to a
message), CZCMH2 is entered; CICMH3 is
entered after a synchronous interruption
(caused by completion of the card-read-and-
stack operation).

The user can stop Finish processing by
setting off the Finish in Progress bit in
his DCB and calling Finish for the final
time. This will cause any activated inter-
ruption routine to be deleted before a
return code indicating *complete®™ is given
to the user.

The user may also prevent the issuing of
a data-group-end message by turning on the
Inhibit Message bit in his DCB. This will
cause Finish to go directly to its comple-
tion routine at points where it would
otherwise issue a message and wait for
response.

Primary Entry Point (CZCMH1) Processing:
If the DCB or DEB are not valid, the task
is terminated via ABEND.

When the input is complete without
error, the message-defining loop is
entered. (See DCBRCX=30, below.) If the
input is incomplete, control returns to the
user with general register 15 indicating
"incomplete”. If the input is complete
with error, the completion routine (see
DCBRCX=80 below) is entered.

When Finish is first entered on output,
and an error was recorded by a user-issued
PUT, no attempt will be made to flush the
buffer. Otherwise, if no error occurred,
the device type determines the line of
processing.

For a printer, a PUT is issued to write
the last buffer page. If the PUT is not
yet complete, the return code is set to
*incomplete® and the routine returns to the
caller. If the PUT is complete but an
error on a Finish-issued PUT is indicated,
the user will be provided with error point-
ers if this has not already been done
(error recovery will be attempted if the
error indicator is set off), and control
returns to the caller with the Finish-Just-
issued flag on, the Finish-in-Progress flag
off, and a return code indicating “"complete
with error”™ in general register 15.

Otherwise, the message “Remove output
from printer XXXX, then ready printer®" or
*Remove output from punch XXXX, then ready
punch®™ is sent and the routine awaits

70 Part I:

operator response. However, if the combine
option is indicated, an IORCB for a card to
be read and stacked in pocket 3 is built

and executed before this message is issued.

For a punch, a blank record is con-
structed and PUT in order to force the last
card into the stacker. If this punching is
incomplete, control returns to the user
with general register 15 indicating ®incom-
plete®. 1If the punching is complete with
error, another PUT 1s issued to obtain
error pointers for the user if this has not
already been done (error recovery will be
attempted if the error indicator is set
off) and control returns to the caller with
the Finish~-Just-Issued flag on, the Finish-
in-Progress flag off, and a return code
indicating "incomplete with error™ in gen-
eral register 15. If no error occurred in
the punching, processing continues, as with
the printer, at the PUT for flushing the
last buffer.

For subseguent entries to Finish, the
path taken depends on the value of DCBRCX
as set by the previous FINISH.

DCBRCX=30: Completion of input is being
awaited. If the input operation is not yet
complete, the routine returns to the caller
with the return code indicating "incom-
plete®. If the input operation is complete
with error, the completion routine (see
DCBRCX=80 below) is entered. If the input
operation is complete without error proces-
sing continues at the message-defining
loop. 1If any of the DECBs are marked com-
plete with no errors and a unit check is
indicated, the message "Remove output from
reader XXXX, then ready reader™ is sent and
operator response is awaited. 1If a unit
exception is indicated, the message "Remove
output from reader XXXX" is sent and Finish
enters its completion routine. If there
are no such DECBs, the message sent will
instead be "Remove input/output from reader
XXXX, then ready reader."

DCBRCX=40: Finish is awaiting comple-
tion of the PUT. Processing continues as
if Finish had just issued its PUT to write
the last buffer page.

DCBRCX=60: Awaiting an asynchronous
interruption (operator response). The
interruption has still not occurred, so the
return code is again set to indicate
"incomplete® and the routine returns to the
caller. (Not applicable to RJE.}

DCBRCX=80: End of wait for the asynch-
ronous interruption. This condition is
caused by the occurrence of the interrup-
tion or by the user's turning off the
FINISH-in-Progress bit before the interrup-
tion was received. The completion routine
is entered, the FINISH-Just-Issued flag is

Access Method for BSAM, MSAM, TAM and IOREQ

set, the FINISH-in-Progress flag is turned
off, the appropriate return code indicating
“"complete” is set in general register 15,
and the routine returns to the caller.

{Not applicable to RJE.)

DCBRCX=50: A wait for a card to be
stacked in pocket 3 when the device is a
punch and the combine option is indicated.
If there are any outstanding IORCBs, the
card-read-and-stack operation is not yet
complete so the R15 return code is set to
®"incomplete® and the routine returns to the
caller. Otherwise, if no errors were rec-
orded on the card-read-and-stack operation,
the message "Remove output from punch XXXX,
then ready punch® is sent and operator
response is awaited. If an error was rec-
orded, the message sent instead will be
"Feed card from reader YYYY, stack in poc-
ket 3, remove output from punch XXXX, then
ready punch.® (Not applicable to RJE.)

Asynchronous Interruption Entry Point
(CZCMH2) Processing: This interruption is
caused by the operator changing the device
state from "not ready®™ to “ready®, the
response required following the issuing of
a message. (This routine is not entered

ring an RJE task.)

The DCBRCX field is set to indicate that
the interruption has occurred. The DIR
macro is used to delete the interruption
routine and control is passed to the cal-
ling routine with a return code of zero in
general register 15.

Synchronous Interruption Entry Point
{CZCMH3) Processing: This interruption is
caused by the completion of a read, feed
and stack in pocket 3 operation when the
combine option is indicated. (This routine
is not entered during an RJE task.)

Errors occurring during the I/0 activity
may result in limited retry, depending upon
the type of error. Any final error is rec-
orded in the DEB.

Except when a retry is in progress, the
number of outstanding IORCBs is reduced to
zero and then, in all cases, a return code
of zero is set in general register 15, and
the routine returns to the task monitor.

MSAM Close Routine (CZCMI)

MSAM Close calls Finish to complete out-
put if necessary, to attempt recovery from
an error on a previous PUT, or to indicate
end of data group to the operator. MSAM
Close frees pages of virtual storage
obtained by MSAM Open. (Chart DD.)

Attributes: Privileged, reentrant, read-
only, public, system, nonrecursive.

Entry Point: CZCMI1 -- Entered from Common
Close via type-1 linkage.

Input: Register 1 contains the address of

the DCB.

Data References: CHADCE, CHADEB, CHADEC,
CHATDT, CHASDA, CHAICB, CHADBP.

Modules Called:
MSAM Finish (CZCMH) -~ Complete output and
indicate end of data group.

DIR (C2CJD) -~ Delete an active interrup-
tion routine.

FREEMAIN (CZCGA) -- Release virtual
storage.

INTING (CZ2CJI) -- Interruption inquiry.

AWAIT (CEAP7) -- Await an interruption.

RJELC (via SVC 232) -- Disconnect RJE line
control.

Exits:

Normal -- Return to caller.

Exrror -- ABEND macro used for abnormal
termination.

Operation: If the DEB is invalid, MSAM
Close abnormally terminates.

Finish is called to assure that I/0 has
been completed. If it has not, the routine
goes into the wait state {using AWAIT)
until the I/0 is complete. FINISH will
then be reissued. This process will be
repeated until all DECBs have been checked
for 1/0 completion. If Finish is awaiting
an asynchronous interruption the INTINQ
macro will be issued. If Finish is in the
process of stacking a blank card, Close
will wait until that operation is complete.
The interruption will then be dispatched
and FINISH will be reissued until a return
code is received indicating that the opera-
tion is complete. 1In an RJE task, the
INTINGQ macro will not be issued (Finish
does not field an asynchronous interruption
during an RJE task) and the test for a
blank card being stacked is bypassed. If
an unrecoverable error occurred on a PUT,
FINISH is reissued in order to attempt
recovery before informing the user of the
errox.

The SDAT malfunction flag is set on if a
permanent error 1s indicated. The DEB
pointer in the JFCB is removed, and the DIR
macro instruction is used to delete any
active interruption routine. The DIR is
bypassed in an RJE task (BULKIO specifies
and deletes interruption routines for RJE).
RJE line control will be disconnected if
the device is a remote printer and the

Section 5: Close 71

installation operator will be notified at
his console via a WIO macro.

If the DEB indicates user read-write
protection class, two FREEMAIN macro
instructions are issued to free the two
noncontiguous groups of virtual storage
pages obtained by MSAM Open. If user-read-
only or user-inaccessible protection is
indicated, a single FREEMAIN is issued to
free the contiguous pages of virtual
storage obtained by MSAM Open.

The DEB pointer in the DCB is removed,
and control retuins to Close Common.

TAM Close Routine {(CZICYG)J

TAM Close is called by Close Common if a
user desires to close a TAM DCB, because of
ABEND requirements for a task to be closed,
or as a result of a LOGOFF command.

In continuing the close processing from
Close Common, TAM Close is called to per-
form additonal closing functions unigue to
TAM terminals. This includes freeing the
control blocks and buffer areas cobtained
during TAM Open and pexforming the disable/s
enable function at logoff time. TAM Close
then returns to Close Common except when an
abnormal end is required in which case it
goes to ABEND or SYSER. (See Chart DE.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.

Entry Poimt: CZCYGl -- Entered via type-i
linkage.
Input: Register 1 contains the address of

a two-word parameter list:
Word 1 -- Address of DCB being closed.
Word 2 ~-- Address of associated JFCB.

pData References: CHADCB, CHATDT, CHASDA,
CHADEB, CHAISA, CHADEC.

Modules Called:

Write {(CZCYM) -- TAM write.

Check {CZICRC} -- Check.

VMA (CZCGA) -- Free virtual storage.

AREND (CZACP)} -- Abnormal task termination.

Wwi0 (CZABQ) -~ Write to operator.
SETAE (CEAAK) -- Set asynchronous entry.

ADDEV (CEAAC) -- Add device to task device
list.

RMDEV {(CEAAD) -- Remove device from task
device list.

72 Part I:

XTRCT (CEAH3) -- Extract TSI field.

SYSER (CEAIS) -- System error.
Exits:
Normal -- Return to calling routine.
Error -- 1. ABEND macro instruction.
2. SYSER.
Operation: TAM Close initially saves the

general registers. The Recursive Call flag
is tested to prevent a recursive loop
between TAM Close and ABEND. If the flag
is set, it indicates that this is a recur-
sive call. This means that just prior to
this entry to TAM Close (through Close Com-
mon) from ABEND, and exit from TAM Close to
ABEND occurred. TAM Close therefore does
not proceed but only clears the Recursive
Call flag and branches to ABEND.

If the Recursive Call flag is not set,
the opened DCB count in SDAT for this ter-
minal is decremented by 1 (for this DCB)
and the number of opened DCBs that are
still open for this terminal is examined.

If the number is positive, the pages of
virtual storage created for this DCB are
freed, and the pointers that were set dur-
ing TAM Open are removed. (See TAM Open
Figure 4.) A return is then made to Close
Common.

If the number is zero, processing con-
tinaes. (This indicates there is now no
opened DCB for this terminal.)

If the number is negative, the recursive
call flag is set, a count of zero replaces
the negative number and processing con-
tinues as if there were a zeroc count.

Processing continues with this terminal
no longer having any opened DCB. A test is
made to determine if the interruption
storage area (ISA) flag is set with ABEND=
2. If it is not, TAM Close continues test-
ing the terminal to determine the type of
close.

If it is set, then TAM Close immediately
goes to the final steps of a close.

Note: ABEND=2 indicates that the entry to
this closing came from ABEND and, after the
closing, a return is made to ABEND. When
this return is made, ABEND retains control
of the terminal.

Testing continues at this point to
determine the type of close by verifying
that the terminal is defined and, if so, if
it is on a 2702.

If it is defined and is not on a 2702,
TAM Close proceeds with the final steps of

Access Method for BSAM, MSAM, TAM and IOREQ

a close, bypassing the disable/enable func-
tion. (The terminal defined in this manner
is the operator's terminal; a 1052-7 direct
connection to the multiplexor channel.)

If it is supported and is also on a
2702, then the disable/enable function is
required. Initially, after checking that
the device has not been phased out, proces-
sing takes place to provide a SYNAD address
for the disables/enable function. The SYNAD
address in the user's DCB is saved in a
temporary area within TAM Close and is
replaced with a TAM Close SYNAD address.
Should any 1I/0 operation fail during the
disable/enable function the SYNAD will
either declare a minor SYSER scftware error
or abnormally terminate the task. In all
error cases the task 1s abnormelly ter-
minated. At this point the terminal is
disabled and TAM Close must then enable the
line. 1In order to enable the line, TAM
Close reopens the DCB (by setting the DCB
open flag) that was previously closed in
Close Common. After performing the follow-
ing functions, TAM Close closes the DCB
again with the disable/enable function com-
pleted and the user's SYNAD address
replaced. The fcllowing functions are
required in order for TAM Close to enable
the line:

e The disabled terminal must be added to
the task.

s Asynchronous interruptions must be
ignored when the disabled terminal is
connected to the task.

¢ The terminal control unit must be
restored to the initial SAD order.

e The line is then enabled.
e The terminal is removed from the task.

If it is not defined, then the Recursive
call flag is set and TAM Close proceeds
with the final steps of a close, bypassing
the disables/enable function.

In the final steps of a close, the pages
of virtual storage created for this DCB are
freed and the pointers that were set during
TAM Open are removed (see Figure 4).

A final test is then made of the Recur-
sive flag. If it is on, a message is
issued to the operator and ABEND is
invoked. If it is not on, a return is made
to Close Common.

IOR Close Routine {CZCSD)

IOR Close is called by Close Common:

e pue to normal completion of a task.

s Due to ABEND requirements for a task to
be closed.

In continuing the close processing from
Close Common, IOR Close is called to per-
form additional functions for these
devices. IOR Close waits until all out-
standing DECBs have been completed and then
frees the IOREQ work area, DEB and IORCBE.
IOR Close then returns to Close Common.
(See Chart DF.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, nonrecursive,
privileged.

Entry Point: CZCSD1 ~- Entered by type-1
linkage.

Input: Register 1 contains the address of
a two-word parameter list:

Werd 1 -- Address of DCB being closed.
Word 2 ~- Address of associated JFCB.

Data Reference: CHADCB, CHADEC, CHADEB.

Modules Called:
VMA (CZCGA) -- Free virtual storage.

AWAIT (CEAP7) -- Await an interruption.
DIR (CZCJID) -- Delete asynchronous inter-
ruption requests pending.

Exit: Noxmal return to calling program.
Operation: IOR Close initially saves the
general registers. The address of the DEB
(DCBDEB) is obtained from the DCB. A test
for any unchecked DECBs is made.

s If there are no unchecked DECBs
(DEBNPC=0), processing continues by
determining the area to be freed.

» If any DECB is unchecked (DEBNPC#0),
the address of the last DECB in the
queue is obtained (from DEBDEL). The
AWAIT SVC is moved into this DECB and
the IOR Close executes (EX) the AWAIT
in this DECB. IOR Close then waits
until this last DECB is posted complete
(DECECB), and then processing continues
by determining the area to be freed.

In determining the area to be freed the
size of the DEB is added to the size of the
IORCB and then a FREEMAIN macro instruction
is issued to free the area. The final step
of IOR Close is tc return to Close Common.

Section 5: Close 73

SECTION 6:

ROUTINES SPECIFICALLY DESIGNED FOR BSAM

LABEL PROCESSORS

The following routines describe tape and
direct access input and output label
Processors.

Tape Vcoliume Label Routine (CZCWX)

The Tape Volume Label routine is called
by Device Management to read a tape volume
label, or to rewind and unload a tape. It
may also be called by Device Management oOr
the LABEL command routine to write a volume

label {Chart EA}.

Entry Points:

CZCWX1 -- Entered to read the volume label.

CZCWX2? -~ Entered to rewind and unload a
tape.

CZCWY3 ~- Entered to write the volume
label.

input: Register 1 contains the address of

the fcllowing parameter list:

Word 1 -- Address of the SDAT.

word 2 -- Address of an 80-character label
buffer.

Word 3 -- Address of a l-byte field con-
taining the density setting.

Wword & -- Address of a 1-byte field con-
taining ASCII/EBCDIC indicator (X'20°' =
ASCII; X'00° = EBCDIC).

Modules Called:
Controcl (CZCRBS) -- Rewind, rewind and
unload, write Tape Mark, oxr backspace.

GETMAIN {(CZCGA2) -~ Get a work page.

rRead/Write (CZCRAS) -- Read a block, write
a label.
Exits:
Return Code Condition
00 Normal return, or in-
correct length on READ
or WRITE.
g4 Intercepted more than 10

times, or unit check with
no file protect.

08 Unit exception.
oc Unit check with file
protect.

74 Part I:

Operation: The text of the 'Operation® is
keyed to the labels of Chart EA.

A Read is entered at CZCWX1l, a Write at
CZCWX3. Tape Recording Technique, density,
BPI are set (CA001), a temporary DEB built
(CA001A) and the tape rewound (CAQ002).

CZCRAS reads the label for a Read option
and returns on normal completion or returns
a code as described undexr 'Exits?® (CAQ04C -
CAO08AR).

CZCRAS writes a number of tape marks if
the first word of the buffer is blank, or
writes a label. An American National Stan-
dard format label is written where ASCIX is
specified. The label write will be fol-
lowed by a write of tape marks. If CZCWX
was called by Pause, two tapemarks are
written; otherwise, five tapemarks are
written (via five calls to Control) {(CAQ04
- CAOQUA - CB0O08 - CAOOSE).

If CZCWX was called by PAUSE, the file
is backspaced past the tape marks. If not
called by PAUSE, it is rewound and unloaded
(CAGOS5F - CA0G5n).

At C2ZCWX2, a temporary DEB 1is created
and CZCRB is called to rewind and unload
the tape.

various return codes reflect the possi-
ble READ/WRITE errors. (See "Exits®.)

Tape Data Set Label Routine (CZICWY)

This routine reads and writes data set
header and trailer labels on magnetic tape
volumes. s Error checking is provided after
reading labels. User label routines are
called if required. Provision is made for
reading and writing labels in either stan-
dard IBM or American National Standard for-
mats. (See Chart EB.)

Attributes: Reentrant, resident in virtual
storage, read only, public, privileged,
system, nonrecursive.

Entry Points:
CICWY1l -- Entry point for processing header
labels for input data sets.

CZCWY2 -- Entry point for processing trail-
er labels for input data sets.

CZCWY3 -- Entry point for processing header
labels for output data sets.

CZCWY4 —-- Entry point for processing trail-
er labels for output data sets.

Access Method for BSAM, MSAM, TAM and IOREQ

Input: Register 1 contains the address of
a parameter list consisting of the address
of the SAM communication block, CHASCB.
CHASCB includesn SCBIOA, which pointa to an
80-byte bufter area. Flelds of special
intereust reached through CHASCB:

DCGOFG (Open Flag - DCBO3M) which may

contain:
o] Data set being opened or closed.
1 Data set open, BOV process.

DCBOFG (EOT Flag - DCBO6M) which may

contain:

0 Process on basis of open flag.

1 EOT occurred while writing EOF
labels - write EOV this time.

DCBOPT (Option - DCBSU2) which may

contain:

0 Standard IBM labels (EBCDIC
user) .

1 American Hdational Standard labels

(ASCII user).

TDTLAB (Labels - TDTSUM) which may

contain:

0 No user labels.

1 Process user labels.
Data References: CHASCB, CHADCB, CHADEB,
CHADEC, CHAISA, CHALB1, CHALB2, CHASDA,
CHATDT.
Modules Called:
BSAM Read/Write (CZCRA) -- Read or write a

physical record.

control (CZCRB) -- Provide non-data opera-
tions on the tape device.

LVPRV (C2CJL) -- Provide type-3 linkage to
nonprivileged user label routines.

User Prompter (CZCTJ) -- Communicate with
user.
Volume Sequence Convert (CZCWV) -- Compute

the address of the volume serial field
of JFCB specified by relative volume
sequence number in SCBRVS.

Exits:
Normal -- Return to calling program with
return code 0 in register 15.

Error -- Link to CZACP (ABEND) with regist-
er 1 pointing to message area, first
byte of which contains the length of the
message text.

Operation: An initialization section used
in common from all four entry points per-
forms standard linkage and save require-
ments and establishes addressability. A
branch table containing the addresses of
the four separate labeling routines is
encountered, and the appropriate label pro-

Section 6:

cessor reached based on a code saved upon
entering Tape Label Processor at one of the
four entry points.

Processing for each of the four labeling
routines is discussed below separately. In
addition, three subroutines, Build, a rou-
tine which actually builds the tape label
in a buffer for output, Check, which deter-
mines processing after a label 1/0 opera-
tion has occurred, and SUL, which handles
user labels, are described.

Input Header Label Processor (CZCWY1): The
tape label is read and the read checked by
a branch to the Check subroutine. If a
read error has occurred, or a tape mark or
the beginning of the tape is encountered,
an abnormal end is made. If the label is a
volume label, another read is issued. If
the label is not a volume label, and is not
a HDR1, EOV1, or EOF1 label, an abnormal
end is made.

If the label is HDR1, EOV1, or EOF1,
plock count is stored in the DCB. The
DSNAM subroutine is entered to check the 17
least significant characters of the data
set name against those in the JFCB. The
user is notified through the PROMPT macro
instruction when the data set names in the
label and the JFCB do not agree and given
the option to continue or to terminate by
an abnormal end.

the

If the generation/version numbers are
not correct, the user, as above, has the
choice of terminating or continuing.

The next label is read and the read is
checked. An abnormal end termination is
made if a read error occurs. If a tape
mark is read during a read backward opera-
tion, the routine backspaces the tape to
position it for a data set read. If the
label was an HDR2, an EOF2, or an EOV2, and
if the record format, record length, andsor
block size in the CHADCE are zero, the rou-
tine cobtains the information from the
label, converts it to binary, and stores it
in the DCB. If the user has indicated his
data set is in ASCII, the HDR2 label will
have a buffer offset field. Unless this
field contains zero, it will also be con-
verted to binary and stored in an appropri-
ate field in the DCB.

I1f standard user labels are
fied, or if they are specified
input header label exit is not
tape is positioned to read the
and a normal return is made.

not speci-
but the user
active, the
data set,

With user labels specified, a branch is
made to the SUL subroutine (explained
below). On return to the Input Header rou-
tine, the tape is positioned to read the
data set, and a normal return is made.

Routines Specifically Designed for BSAM 75

Input Trailer Label Processor (CZCWY2):
This routine processes standard IBM (EBCDIC
users) and American National Standard
(ASCII users) trailer labels for an input
data met being read forward, and header
lasbels for an input data set being read
packwards. User labels are also processed.

The routine first reads and checks the
label. If an error or tape mark is encoun-
tered during the read operation, or if the
label read was invalid, the abnormal end
code is set in the CHASCB, and an abnormal
end is effected.

If a volume label was read, the read is
reissued.

1f the block count of the CHADCB does
not equal that in the label, the user is
informed, and a reply is expected. The
user may elect to terminate the task.

if standard user labels are specified,
and the exit is active, another READ is
izsued and checked. Again, if a read error
was encountered, the abnormal end code 1is
gset and an abnormal end is effected. The
READ is reissued if an HDR, EOF, or EGV
label is encountered. Ctherwise, the user
is given the facility to process the label.

tiser labels are read and checked by the
SUL subroutine.

Qutput Header Label Processor (CICWY3):
This routine checks the currently mounted
cutput tape to see if the expiration date
of any data set currently on the tape {and
about to be overlaid) has been reached and
oversees creation and writing of new ocutput
headexr labels in either standaxd IBM ox
american National Standavrd (ASCII users)
format. It sets up the mechanism for writ-
ing up to eight standard usex labels, or an
unlimited number of user labels when ASCIX
is specified.

on entyy to this routine, the tape label
is read and checked. If a wolume label is
encountered, the next label is read; this
ilabel should be either a HDR1 label (from
an old data set which we are overlaying) or
a tape mark (if the tape is clean). Where
neither is encountered, abrbrmal termina-
tion occurs.

If HDR1l was present, the expiration date
of that data set is checked and if it has
not yet been reached, the user is prompted.
He may choose to continue or request
abnormal termination.

The logical file (data set) sequence
number is taken from the JFCB, the tape is
repositioned to write the header labels,
and the Build subroutine called to write
both HDR1 and HDR2 labels.

s

76 Part I:

If user labels have been requested, a
branch is made upon return from Build to
the SUL subroutine.

On return from SUL, the Control subrou-
tine is called to write a tape mark follow-
ing the header label group and position the
tape to write the data set. Normal return
is made to the caller.

Output Trailer Label Processor (CZCWY4):

I1f CLOSE processing 1is being done, the
characters EOF1 are placed in the first
four bytes of the 80 character label buft-
er. Otherwise, this routine must have been
called for an end-of-tape condition, and an
EQV1 is placed there., The remainder of the
label 1is created and written by a branch to
the Build subroutine. Build writes the two
trailer labels in either standard IBM or
American National Standard label format.

The SUL subroutine is called if user
labels have been requested. Control is
called to write a tape mark and position
the tape. Normal return is then made to
the caller.

Build Subroutine: This routine builds 806-
byte output header and trailer labels for
tape volume data sets and writes them by
calling BSAM Read/Write.

The routine expects the first four bytes
of the 80-byte label buffer to already con-
tain HDR1 {(for header labels}), or EOFl1 or
EOV1 {(for trailer labels). BEuild f£ills in
the remaining bytes as shown in Table 21.

Initially, after moving the 17 least
significant characters of the data set name
+o the label buffer, the Volume Sequence
Convert routine is called to compute the
address <¢f the volume serial field of the
JFCB. The data set serial number is
obtained from this field if the volume is
not mounted, or from the SDAT if it is.

Then, in order, the relative volume
segquence number, the data set sequence
number, generation and version numbers,
creation and expiration dates, block count,
and system code are moved into the label
buffer. The data set security number field
is made blank for American National Stan-
dard (ASCII users) label fcormat or a
character zerc for standard IBM format.

Build then branches to the Write subrou-
tine in Tape Data Set Label which calls
BSAM Reads/Write to write the first label on
the tape. The Check subroutine determines
tape write errors or end of tape and passes
that information back to Build. Build now
sets the label number to two and makes up
the second label, illustrated in Table 22.
The standard IBM and the American National
Standard second label formats are similar

Access Method for BSAM, MSAM, TAM and IOREQ

Table 21.

Label 1 Fill Table

e e e e e e ey

r

| Size In Filled ‘Q {
} Label Field | Bytes | From | Remarks |
' + -4~ Ao oo

{ Data Set Identifier| 17 { CHATDT | 17 least signifficant |
i | { {(JPCB) | characters of &% |
i]) | character Data Set i
i | i | Name in the Job File |
{ | i | control Block \
i | ! { I
| Data Set Serial § L3 { CHASDA | Filled from Volume ID i
| Mamber] { or JFCB| field of CHASDA if |
} | } | volume is mounted, |
i i i | otherwise from Volume |
i | ! | ID field of first |
i | { | Volume Serial field |
{ | 1 | in the Job Pile \
i { i | Control Block |
t | | | |
| Volume Sequence i “ { CHASCB | |
| Number I i I |
{ | ! | |
| Data Set Sequence | 4 | CHATDT | i
| Humber] { (JPCB) | I
i | i i |
| Generation Number i & } CHATDT | 1
i i { (JFCB) | |
} | { | !
| version of i 2 } CHATDT | i
| Geperation] §{ (JFCB) |]
§ | | i !
| Creation Date ! 6 { CHATDT | i
i | I rce) | 1
i | | | |
i Expiration Date | [{ CHATODT | |
i] i (JFCB) | i
i | i | t
| Data Set Security | 1 § - | Mot Implemented i
| Mumber] i | (blank if ANS; xzero §
| {Accemsibility) 1 H | if standard IBN) H
i | 1 i i
| Block Count \ 6 | CHBADCE | 1
i | i 1 |
| System Code 1 3 -- !
H] i | 1
{ Reserved] ? i -— | Filled with blanks |
— H i S S — _

] TOTAL 76 Bytes |
. ———— ——— -1
Table 22. Label 2 Fill Table

~ v v T A
i | Size In | Filled |]

i Label Field | Bytes | From | Remarks |
¢ + + + 4
| Record Format i1 | CHADCB | |
I 1 { | 1
{ Block Length [| CHADCB | |
! i i | i
{ Record Length [{ CHADCB | i

§ | i | \
{ Density P 1 { CHADCB | |
| § | | |
| Data Set Position [i - | Contains ¢ it first {
§ [}] | wolume mounted, §
H i ! | otherwise contains 1 i
| | i | |
| Job/Step {17 i - { O0S only |
| Identification |] 1 :
| | | |

Tape Recording	2	CBADCB	
Technique	\		
i i			
} Print Control [CHADCB		
{ Character t I i t			
i] i	. !		
Reserved I 13] -	Contains Blanks		
i i 1 i I			
Buffer Offset t 2 } CHADCB	ANS labels (ASCII) }		
H | i { only; otherwise |
H § i { reserved i
{ I i } . 1
{ Reserved { 28 { -- | Contains blanks |
- e : ——ede —
| TOTAL 76 Bytes }
L

Section 6:

except for the buffer offset field which
must be filled in for the American National
Standard format.

The routine effects an abnormal end 1t
there is a tape write error in writing
either lakel. 1If, on attempting to writ:- a
header lakel, an end-of-tape indication s
detected, an EOV trailer label 1s writte:n
instead and the header label 1is written on
the rnext volume.

A more detailed discussion, including
tables, of both standard IBM and American
Natiocnal Standard label formats, is con-
tained in Appendix A of Data Management
Facilities, GC28-2056.

SUL Subroutine: This routine reads and
writes user labels. Standard 1BM format
users may have a maximum of eight user
labels; ASCII users, who must conform to
the American National Standard label for-
mat, are allowed in TSS/360 to have a numb-
er of user labels limited only by the phys-
jcal extent of the tape volume.

Initially, the routine calling SUL will
have placed UHL1l (user header label) or
UTL1 (user trailer label) in the label
buffer. SUL will then determine from a
code passed in register 1 whether to read
or write. If a user label is to be read,
the Read subroutine will be branched to for
reading and checking a user label. An
abnormal termination will occur if the
label read is neither a header or trailer
label. The user's label processor will
then be called.

Wnere a label is to be written, the
user's label processor will be called first
to build the rest of the label in the label
buffer, and then SUL will cause the label
to be written and checked.

1f the user is nonprivileged, his user
routine is not called directly; he gains
control through the Leave Privilege
routine.

wWhen the user labels have all been read
or written (a maximum of eight for EBCDIC
users, no maximum for ASCII users), return
is made to the routine which called SUL.

Check Subroutine: This routine is entered
foliowing a return from BSAM Read/Write to
check the I/O operation results and deter-
mine further processing.

Check inspects various fields and flags
in the data event control block and sets
the return code as follows:

Routines Specifically Designed for BSAM 77

| |
jUnit Check Unit Exception |°*10°
| {tBeginning of 1
| Tape) {

Ll e e cem e e e e e e s e i e b . et e e o e i s s e s e e 3

o e T e e em—— T 1
| OPERATION CHECKED | i
p———— T {Rtn. |
] READ i WRITE |Code |
_____________________________________ ————i
|[Normal Complete |Normal Complete]*00° |
{ | |
jUnit Exception | - |*ou¢"
I | i
|Error | Exrror |*08°*
{ | |
|Intercepted {Intercepted |toc’

I

|

f

i

If the operation is intercepted, the
routine sets a counter 50 that a maximum of
50 interceptions on this operation is
allowed before the return code is set to
the error code.

If the operation is nct complete, the
AWAIT macro instruction is used to allow
the operation to complete.

DA Input Label Routine {CZCXN)

The Direct Access Input Label processor
reads standard direct access user header or
trailer labels, and provides linkage to a
user label processing routine as specified
in the DCB exit list. {See Chart EG.)

Attributes: Reentrant, nonrecursive, resi-
dent in virtual storage, privileged.
CHCXNL

Entry Point: -- Entered via type-1

linkage.

Input: Register 1 contains the address of
the SAM communication block.

Data References:
CHAISA.

CHASCB, CHADEB, CHADCE,

Modules Called:
Message Writer (CZICWM} ~- Message proces-
sing and ABEND processing.

Obtain/Retain (CZCF0) -- Obtain DA user

label.
LVPRV {CZCJL) ~- Leave privileged state.
EXit:
Neormal -— Return to caller.
Error -- Call Message Writer to do ABEND

processing.

Operation: Standard user labels are read
via Obtain, and, if the user is non-
privileged, processing is provided for via
the Leave Privilege routine (LVPRV).
Figure 8 shows Obtain keys and Label I/0

78 Part I: Access Method for B5AM, MSAM,

UHL (n) UHL (n} CCHHROOO
ar ar
UTL (n) UTL i
Obtoin key User 1cbel key Miscellonecs Ulract Access

User Dato Address

Figure 8. Obtain Keys and label I/0 Areas

area. When a file mark is read, or the
user returns a zero code from LVPRV, the
routine places a zerc code in general
register 15 and returns control to the
invoking program.

If the exit type in SCBEXT is not for
input user header or trailer labels, the
routine sets a unigue ABEND code in SCBABN,
and 1links to the Messaqge Writer for ABEND
termination.

If there was a hardware error while
attempting to read a label, the message
"XXXX LABEL UNREADABLE, ENTER N TO READ
NEXT LABEL, B TC BYPASS LABELS OR E TQ END
THE TASK® is sent to the user via the Mes-
sage Writer routine. If the user replies
"N®, and there have not been eight attempis
to read labels, reading of the next label
is attempted.

If eight attempts have been made, or if
the user replies "B", control is returned
to the caller with a zero return code in
general régister 15. If the user replies
"g*, the routine sets a unique ABEND code
in SCBABN and calls the Message Writer rou-
tine to perform ABEND termination.

DA Output Label Routine (CZCXU)

The Direct Access Output Label processor
provides the user with the facility for
building and writing standard user labels
on a direct access device. (See Chart EH.)

Attributes: Reentrant, nonrecursive, resi-
dent in virtual storage, privileged.

Entry Point: C2ZCXUl -- Entered via type-1
linkage.
Input: Register 1 contains the address of

the SAM communication block.

Data References: CHASCB, CHADCHB, CHADEB.

TAM and IOREQ

vodules Called:
LVPRV (CZCJL) -- Leave privileged ntate.

Obtain/Retain (CZCFO)
label.

-- Retain DA user

Exits:
Normal -- Return to caller with *00°* in
general registerx 15.

Error -- Register 15 contains 04",
operation: If there is a label track in

the first extent of the data extent block,
and an output label type is specified in
the CHASCB, and the exit type is active,
the user is given the facility to build
labels via the Leave Privilege routine, and
to write labels via Retain, until the user
passes a zero return code in general
register 15, or until eight labels are
written. At that time, a file mark is
written via Retain. (See Figure 9 for the
RETAIN keys and the LABEL I/0 area.)

1f the exit type specified in the CHASCB
is not for output header or trailer labels,
a unique ABEND code is set in the CHASCB,
and control is returned to the caller with
a return code of ‘04° in general register
15.

If Retain returns with a code other than
zero in general register 15, a unique ABEND
code is set in the CHASCB, and control is
returned to the caller with a return code
of *'0O4°' in general register 15.

EOV_PROCESSORS

End of volume processing consists of
tape and direct access input and output EOV

routines, mainline and * forced' EOV rou-
tines, and concatenation and check proces-
sors. The EOV routines are entered as the
result of one of two conditions: end of
data set or end of volume.
UHL (n) UHL (n+ 1) CCHHRO00
or or
UTL (n) UTL (h+ 1
Retoin key User label key Miscelloneous Direct Access
User Dota Address
4 4 76 [8

Figure 9. Retain Keys and Label 1I/0 Areas

Section 6:

rorce End of Volume Rout ine_(CZCLD)

The Force End of Volume routine ter-
minates the processing of the current
volume of a data set, and prepares for the
processing of the next volume. It accomp-
lishes this by initiating the knd of Volume
(EOV) routines. (See Chart FAL)

Attributes: Reentrant, resident in virtual
storage, closed, privileged, read-only,
public.

Entry Point: CZCLDF -- Entered by type IM
or type IIM linkage.

Input: Register 1 contains the address of

the DCB.

pata References: CHADCB, CHADEB.

Modules Called:
SAM Mainline EOV (CZCXE) -- SAM Mainline
end of volume processor.

QSAM FEOV (CZCSA) -- QSAM forced end of
volume processor.

Exits:
Normal -- Return to calling youtine.

Error —- ABEND macro instruction.

Operation: Force End of Volume abnormally
terminates the task via the ABEND macro
instruction for any of the following
reasons:

e DCB identifier is not valid.

e Data set is not physical sequential.

e Data set is not on magnetic tape or DA.
o Not;all BSAM DECBs have been checked.

control is returned to the calling routine
when the input DCB is not open.

should all of the above tests be passed
and if QSAM, QSAM FEOV is entered. 1If not
QSAM, or on return from QSAM FEOV, the FEOV
flag is set On and the Mainline EOV routine
is entered. When Mainline EOV returms to
Force End of Volume, control is then
returned to the calling routine.

Note the function of this routine 1is
mainly performed by Mainline EOV.

Mainline EOV Routine (CZCXE)

Mainline EOV performs as a control pro—
gram to End of Volume (EOV) processing. It
oversees the modifying of the DEB, label
processing, volume switching, determining

end of data set, concatenation processing,

Routines Specifically Designed for BsaM 79

[R——

and passing control to user label exit rou-
tines. (See Chart FB.)

Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.

Entry Point: CZCXEl ~-- Entered by type-1

linkage.

Input: Register 1 contains the adiress of
the DCB causing EOV involvement. The PSECT
contains CHASCB and three temporary control
blocks for use in the I/0 operations of
label processing.

Data References: CHADCB, CHADEB, CHASCB,
CHATDT, CHADEC, CHAISA.

moduies Called:
VMA {CZCGA) -- Get virtual storage, free
virtual storage.

Build Common DEB (CZCWB) -- Restore the
common portion of the DEB.

Volume Sequence Convert (CICWV) -- Volume
address convert.

DA Input EOV (CZICXD} -- Diyxect access out~-
put end of volume processing.

DA Output EOV (CZICXI) -- Direct access
input end of volume processing.

Tape Output EOV (CZCX0) -- Tape output end
of volume processing.

Tape Input BOV (CZCXT) -- Tape input end of
volume processing.

User Prompter {CICTJ) -- Communicate with
user.

AWAIT (CEAP7) -- Await an interruption.

Exits:

Normal ——- Return to calling program.

Erxror --

* Call User Prompter to inform user.
» Via ABEND.

Operation: The SAM control block (CHASCB)
is initialized by zeroing the variable
fields, storing pointers to the input DCB,
J¥FCB, and DEB, and storing the volume
address in the volume serial field of the
SCB. The pointers to the JFCB and DER are
known because the input DCB contains a
pointer to the DEB, and the DEB points to
the JFCB.

Mainline EOV assures the DEB pointed to
by the DCB has a valid DEB-id, and that the
DEB points to the DCB passed. If not, the
routine abnormally terminates.

The routine initializes the temporary
DCB and DEB tor use by SAM routines called
by SAM EOV. End of data set is indicated
for non-concatenated unit-record data sets.

1f the device 15 tape, the temporaxy
control blocks are adjusted 5o tape label:n
may be read or written. For DA devices,
the temporary DCB is set so user labels may
be read or written. In either case, tape
or DA, if user labels are specified, GET-
MAIN is called to get unprotected virtual
storage for a label buffer.

Depending on whether the device is tape
or DA, and whether the last I/0 operation
was input or output, Mainline EOV branches
to Tape Output EQV, Tape Input EOV, DA Out-
put EOV, or DA Input EOV routines.

When the device-oriented ECV routine
returns control to Mainline EOV, any
storage which had been obtained for label
buffers and format-3 DSCBs is released via
FREEMAIN.

If no abnormal conditions occurred dur-

ing EOV processing, control is returned to
the calling routine.

Tape Input EOV Routine (CZCXT)

The Tape Input EOV routine executes the
end-of-volume procedures for the mounted
input magnetic tape volume. That is, it
oversees label processing and final volume
positioning. If the mounted wolume is only
one of a multivolume data set, Tape Input
EGOV causes the next wolume to be mounted,
oversees positioning and label processing
of the new volume, and updates the DEB to
reflect the presence of the new volume. If
the data set is a member of a concatenation
of data sets, the Concatenation routine is
used. (See Chart FC.)

Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.

Entry Point: CZCXT1 ~-- Entered by type-1
linkage.

Input: Register 1 contains the address of
the SAM communication block.

Data References: CHADCB, CHADEB, CHASCB,
CHATDT.

Modules Called:
Control {(CZCRB) -- Tape positioning.

Bump (CZCAB) -- Request and verify mount of
new volume.

Build Common DEB (CZCWB) -- Modify the com-
mon portion of the DEB.

80 Part I: Access Method for BSAM, MSAM, TAM and IOREQ

Tape Data Set Label (CZICWY)
processor.

-- Tape label

BSAM Read/Write (CZCRA)
tape mark.

-- Read ahead for

User Prompter (CZATJ) --.Send message to

user.

Tape Positioning (CZCWP) -- Tape
positioning.

Volume Sequence Convert (C2ZCWV) -- Volume
address conversion.

Concatenation (CZCXX) -- Concatenation.

bxits:

Normal -- Return to calling program.

Error -- Call Message Writer to do ABEND

processing.

Operation: For forced end-of-volume condi-
tions, Tape Input EOV proceeds as if the
EOV condition was encountered for unlabeled
tape.

The tape is properly positioned via the
Control routine.

when trailer labels are present, Tape
Data Set Label is called at entry point
CZICWY2 to process user trailer labels and
standard trailer labels.

Unless a read backward operation was
performed, a READ is issued to check for a
second tape mark, indicating end of tape.
Otherwise, end of data set processing is
required. The tape is repositioned via
CONTROL.

If this is the last volume, and there is
no concatenation, the End of Data Set flag
is set in the DCB and control is returned
to the calling routine.

The Concatenation routine is invoked 1if
concatenation is indicated. For a non-end-
of-data-set condition, the Bump routine is
used to mount the next volume. The DEB is
updated via Build Common DEB to reflect the
new volume and the Tape Positioning routine
is used to position the tape for proces-
sing. If the newly mounted tape has
lables, the Tape Data Set label is called
at entry point CZCWY1l to process standard
iabels and user header labels. Tape Input
EOV then returns control to the calling
routine.

The routine abnormally terminates when
Bump indicates that the requested volume
has not been mounted, ox when the relative
volume sequence of the volume to be mounted
is less than the volume sequence number of
the current volume.

Section 6:

Tape Output EOV Routine (CZCXO)

when a data set is being closed, Tape
output EOV oversees the end-of-volume tape
processing, including the writing of trail-
er labels. For multivolume output Jata
sets, this routine oversees the mounting of
the new volume and updating of the DEB.
(See Chart FD.)

Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.
Entry Point: CZCX0O1 -- Entered by type-1
linkage.

Input: Register 1 contains the address of

the SAM communication block which was
generated in the PSECT of Mainline EOV.

pata References: CHADCB, CHASCB, CHATDT.
Modules Called:

Control (CzZzCRB) -- Tape positioning.

Bump (CZCAB) -~ Request and verify mount of

new volume.

Build Common DEB (CZCWB) -- Modify the com-
mon portion of the DEB.

Volume Sequence Convert (CZICWV) -- Volume
address conversion.

Tape Data Set Label (CZCWY) -- Tape label
processor.

User Prompter (CZCTJ) -- Communicate with
user.

Exits:

Normal -- Return to calling progran.

Exrror -- Via ABEND macro instruction.

Operation: Tape Output EOV turns off the

FEOV flag in the DEB and, via the Control
routine, writes a tape mark on the tape.

1f labels are specified, the Tape Data Set
Label is called at CZCWY4 to write user and
standard volume trailer labels. Another
tape mark is written and the volume posi-
tioned immediately before the tape mark.

Tope marks written by Tope Input £OV

Tt
[gl
Record {R{ Record iR IT
G

User {obels Volume Lobels

AR

L
C

If the data set is being closed, normal
return is made to the user.

Otherwise, the address of the next
volume is obtained by Volume Sequence Con-

Routines Specifically Designed for BSAM 81

vert, the volume just ended is rewound by
Control, and the volume is mounted by the
Bump routine. The DEB is updated via Build
Common DEB to indicate the presence of the
new volume and 1if labels are specified, the
user and standard header labels are pro-
cessed by the Tape Data Set Label.

Wwhere an end-of-volume indication is
received while the EOF trailer label 1is
being written, the trailer label is rewrit-
ten to contain EOV instead. The EOF trail-
er label is then written by the Tape Data
Set Label at the beginning of the newly
mounted volume following its volume and
header labels.

This routine abnormally terminates when
Bump returns an error code indicating that
the requested volume was not mounted, ox
when there is an incorrect volume sequence
number.

DA Input EOV Routine {CZCXI1)

Wnen a data set is being closed, Direct
Access Input ECOV oversees the end-of-volume
direct access device processing, including
the reading of user trailer labels., For
multivolume input data sets, or data set
members of a concatenation, this routine
oversees the end-of-volume processing for
the current volume, the mounting of the
new, or next volume, and the updating of
the DEB. {See Chart FE.)

Entry Point: CACXIL1 ~~ Entered via type-l
linkage.
input: Register 1 contains the address of

the SAM communication block.

Data References:
CHADEB, CHADCB.

CHASCB, CHATDT, CHADSC,

Modules Called:
Bump (CZCAB)} -- Request and verify mount of
new volume.

Obtain/Retain (CZCFO) -- Obtain DA user
label and retain DA user label.

Build DA DEB (CZCWL} -- Build direct access

DEB.

(CZATJ)

User Prompter -~ Communicate with

user.

SETDSCB {(CZCxS)
file mark.

-- Update DSCBE and write

Volume Sequence Convert (CZCWV) -- Volume
address conversion.

DA Input Label (CZCXN) -- Direct access

input user label processor.

82 Part I:

Concatenation (CZCXX)
data sets.

-- Concatenation of

Exits:

Normal -- Return to caller.

Error -- Call User Prompter or ABEND.
Operation: If the integrity bit is on, or

1f a write was previously executed on the
volume on which the EOV condition was
encountered, a call to SETDSCB is provided
to rewrite the format-1 DSCB with the inte-
grity bit off and also to write a file mark
if this is indicated.

Input user labels are processed by a
call to the DA Input Label routine.

If all volumes have been processed and
concatenation is not specified, end of data
set is indicated.

Otherwise, the Concatenation routine is
called if concatenation is specified. If
all volumes bhave not been processed, Bump
is used to switch volumes. When the new
volume is mounted, Obtain and Retain are
called to read the DSCB and write the new
DSCB respectively. The user is warned and
given the option to continue if the inte-
grity bit for the newly mounted volume is
on. The new DEB is built by Build DA DEB.

DA Output EQOV Routine {(CZCXD)

When a data set is being closed, Direct
Access OQutput EOV performs end-of-volume
processing, including the writing of user
labels and release of available unused
storage. For multivolume cutput data sets,
this routine oversees the acquisition of
new extents and the updating of the DEB.
(See Chart FF.)

s
Attributes: Reentrant, resides in virtual
storage, closed, read-only, privileged.

Entry Point: C2CXD1 -- Entered by type-1

linkage.

Input: Register 1 contains the address of
the SAM communication block.

Data References:
CHASCB, CHADSC.

CHADEB, CHADCB, CHATDT,

Modules Called:
Bump (CZCAB} -- Request and verify mount of
new volume.

Extend (CZCEX) -- Allocate additional DA
space for a data set.

Obtain/Retain (CZCF0O) -- Obtain direct
access user label and retain direct
access user label.

Access Method for BSAM, MSAM, TAM and IOREQ

Build DA DEB (CZCWL) -- Build or modify a
direct access DEB.

Message Writer (CICWM) -- Message proces-
sing and ABEND processing.

Read Format-3 DSCBs (CZCWR) --
chain format-3 DSCBs.

Read and

Volume Sequence Convert (CZCWV)
address convert.

-- Volume

Set DSCB (CZCXS)
file mark.

-- Update DSCB and write

DA Gutput Label (CZCXU) -- Write user
labels for DA output data sets.

Exits:
Normal -- Return to calling program.

Error -- Call Message Writer to do ABEND
processing.

Operation: The integrity bit is set on.
If the data set is being closed, a request
is issued for space or a volume switch.

DA Output EOV uses Set DSCB and DA Out-
put Label to write a file mark on the
volume, reset the integrity bit, and pro-
vide for user output label processing.

0ld data sets which exist on more than
one volume and for which there is a suc-
ceeding volume, have space allocated to
them on the succeeding volume.

On a forced EOV, DA Output EOV forces a
volume switch.

For new data
attempts to get
mounted volume.

sets, DA Output EOV
space on the currently
If it cannot:

e For privafe data sets - If the data set
is OLD or new, and this is the last
volume of the data set, a demount/mount
is requested, and allocation on the
newly-mounted volume is attempted.

When space 1is denied on the current
volume, Set DSCB is used to write a file
mark on the volume and to reset the format-
1 DSCB integrity bit when volume switching
is required. DA Output EOV uses the DA
Output Label to allow user label
processing.

Build DA DEB is used to extend the DEB
if space is allocated on the current
volume; otherwise, when space is allocated
on a new volume, Build DA DEB builds a new
DEB.

Section 6:

Concatenation Routine (CZCXX)

The Concatenation routine is called to
make the next data set of a concatenated
group ready for processing. (See Chart

FG.)

Attributes: Reentrant, resident in virtual
storage, closed, read-only, privileged.
Entry Point: CZCXX1 -- Entered via type-1
linkage.

Input: Register 1 contains the address of

the SAM communication block.

Data References:
CHADEB.

CHASCB, CHADCB, CHATDT,

Modules Called:
Bump (CZCAB) -- Request and verify mount of
new volume.

Open Common (CZCLA) -- Common open.

Close Common (CZCLB) ~- Common close.

ABEND (CZACP) -- If bad return code from

Bump.
Exits:
Normal -- Return to the calling routine.
Error -- Call ABEND.

Operation: The Bump routine is called to
mount the first volume of the next data
set.

Close Common is called to close the cur-
rent data set and Open Common 1is called to
open the next data set. A return code of
four is provided in the calling program.

The routine abnormally terminates when
Bump rejurns an error code.

BSAM USER ROUTINES

The following routines provide user con-
trol of some aspects of direct access and
tape devices.

Note Routine (CZCRN)}

The Note routine provides the user with
identification of the last record read or
written. A relative track and record numb-
er is returned, if the device is direct
access, and a block count is returned for
tape. All DECBs must be checked by the
Check routine before Note is used. (See
Chart GA.)

resident in virtual
nonrecursive.

Attributes: Reentrant,
storage, closed routine,

Routines Specifically Designed for BSAM 83

Entry Point: CZCRNA -- Entered via type-1M
linkage.

Input: Register 1 contains the address of
the DCB.

Data References: CHADCB, CHADEB.

Modules Called:
FULREL (CZICRS) -~ Convert full DA address
to relative address.

User Prompter (CZATJ} -- Communicate with
user.

Exits:
Normal -- Return to the calling routine.

Exrror -- AREND termination.

Operation: Any data set which is not DA
will be treated as if it were on magnetic
tape. HNo error occurs when the Note rou-
tine is enterxred for other than DA or mag-
netic tape, but the address Note returns
will not be meaningful for other devices.

The yxoutine ABENDs if the DCB is inva-
iid. If all I/0 nas not been checked, the
user is prompted to see if he wishes to
continue.

To obtain the relative address of the
last record read or writtem on DA, the DA
address of the last record is passed to the
FULREL routine which converts the full DA
address to a relative address. The rela-
tive address is placed in register 1, and
if the last 1/0 coperation was a write, the
number of bytes remaining on the current
track is placed in register 0.

For magnetic tape the Note address
returned to the calling routine is a rela-
tive block count. The block count is zero
when the data set is opened to write. The
first block is block 0, the second block is
plock 1, the third block is block 2, etc.
The relative block count is maintained (for
the current record} in the DCBBLXK.

Table 23 indicates the block count which
is set into register 1 for the calling pro-
gram. The flag DEBRSB indicates if the
last block processed was read backwards
{ON} or not (OFF}.

Note: PFor magnetic tape volumes, if the
Note routine is entered after a Point macro
instruction was executed and there is no
READ or WRITE macro instruction between
them, it returns the current relative block
count plus one (if last I/0 opeaation was a
read backward), or minus one (if the last
1/0 operation was forward). The reason for
this is that there is no change in the
DCBBLK field since the last READ or WRITE,
yet when Note is again entered it will per-

84 Part I:

Table 23. Decisions for Setting Block
Count

[T T T s m e TUYTTT
| Last block read backward {Y|N[N}
Pl
| DCBBCK=0 iy N
————————————————————————————————— t-4-+-4
| Add one to blocck count XU 1
| T B
| Subtract one from block ccunt D S I
| [
| Return with block count in I T T
| register 1 XIX X}
U 4.1 1 3

form the calculation (adding or subtracting
one) on the relative block count anyway.

Point Routine (CZCRM)

The Point routine performs certain
operations which cause the next read or
write operation tc be performed at a speci-
fied block in the current volume. The
relative address of the block in question
is passed to this routine as an input para-
meter. The Point routine may be thought of
as a logical repositioning of the data set.
{It is a real repositioning in the case of
magnetic tape.) Point may only be used
with DA and magnetic tape volumes. (See
Chart GB.)

Attributes: Reentrant, resident in virtua
storage, closed routine, privileged.

CZCRMA —-- Entered via type-1l

Entry Point:
linkage.

Input: The following parameters are

passed:

Register 0 -- Relative DA address, or rela-
tive magnetic tape block address.

Register 1 -- Address of DCB.

The relative block address should have
been obtained by use of the Note routine.

Data References: CHADER, CHADCB.

Modules Called:
RELFUL (CZCRR) - Convert a relative DA
address to a full DA address.

Control (CZCRB) -- Tape positioning.

Exits:
Normal -~ Return to calling program.

Error -~- ABEND termination.

Operation: Point does not apply to devices
other than DA or magnetic tape. Therefore,
for other devices, normal return to the
calling routine is made immediately.

Access Method for BSAM, MSAM, TAM and IOREQ

Note always returns the relative address
of the last block read or written. If the
user wishes to point to that block, the 2
byte should remain zero.

When Point is entered for a DA device,
the above mentioned flag (DEBIPT) is set if
necessary, and the relative DA address is
passed to the RELFUL routine. The RELFUL
routine converts the relative addiress to a
full DA address which is stored into the
DEBNIO field. The DEBBP flag is set on to
indicate to Read/Write that a Point opera-
tion has occurred.

When Point is entered for magnetic tape,
if the tape volume is not currently at the
requested postion, the Control routine is
used to forward space or backward space the
tape to the requested position. The dif-
ference between the requested block count
and the current block count is the number
of blocks to be skipped.

If errors occur during a point, DEBNF1
is turned on so that subsequent reads or
writes will be intercepted and SYNAD will
be given control when those reads or writes
are checked.

Backspace Routine (CZICRG)

The Backspace routine backspaces a phys-
ical record on the current magnetic tape or
direct access volume. (See Chart GC.)

Attributes: Reentrant, resident in virtual
storage, closed routine, nonrecursive,

privileged.

Entry Point: CZCRGA -- Entered by type-1M
or type-2 linkage.

input: Register 1 contains the address of

the DCB.

Data References: CHADCB, CHADEB, CHASDA.

Modules Called:
Find Records per Track (CZCRQ) -- Find
records per track.

Control (CZCRB) -- Tape positioning.

Exits:

Normal -- Return to the calling routine.

Exrror -- For unsuccessful completion, gen-
eral register 15 contains a return code
> 04,

ABEND is called under the following
conditions:

* Invalid DCB
®* Unchecked Read or Write outstanding

® Illegal device or overflow records.

Section 6:

Operation: For magnetic tape a backspace
is much easier to perform since only the
pPhysical position of the tape need be esta-
blished. On the other hand, the records of
a sequential data set on DA are not neces-
sarily packed on the volume, and are not
necessarily on the same track. They must
be on the same volume for backspace.

For a backspace on magnetic tape, the
Backspace routine links to Control via a
type-1 linkage, with a backspace record
request. If a backspace record goes over a
tape mark, a forward space record command
is issued to Control, and an error return
is given to the user. If an unrecoverable
€error occurs, a return code of '04°' ig
placed in general register 15 upon return
to the user.

The backspace operation for a direct
access volume may be very easy or quite
involved, depending on where (logically)
the data set is positioned. The DEB con-
tains the DA address of the next record to
be processed (DEBNIO). The Read/Write rou-
tine will operate upon that address when it
is entered. Consequently, the DA backspace
is accomplished if the DA address of the
previous record can be stored into DEBNIO.
A backspace is not performed on a data set
which has track overflow specified. Neith-
er is a backspace performed if the track
containing the user labels would be
entered.

If 1I/0 operations have not been per-
formed on the data set, no backspace is
possible and control is returned to the
calling routine with a non-zero return
code.

Should DEBBP be zero, no prior backspace
has occurred since the last READ or WRITE.
And if DEBLIOR contains some positive numb-
er, there is no possibility of backspacing
into labels or out of extents. Therefore,
the backspace is accomplished by moving the
last I/0 address to the next I/0 address.

If a previous backspace operation
resulted in an error, control is returned
to the calling routine (return code = 0)
without any attempt to backspace. The pre-
vious error will be detected by the Check
routine when the next 1/0 operation is
checked.

DEBBP is set to 1 when the first backs-~
pace is made. If a previous backspace has
occurred and curcent position is not at the
first record in current track, the backs-
pace is accomplished by subtracting from
DEBNIOR which logically positions to the
previous record in the current track.

Note 1: The Find Records per Track routine

is used to count the number of records in a
track. To use it one stores the MBCCHH of

Routines Specifically Designed for BSAM 85

interest in DCBRD and calls Find Records
per Track. When Find Records per Track
returns, the number of records in the track
is in DCBRDR. If Find Records per Track is
called by Backspace and it does not work
properly, Backspace sets DEBNF1 on so the
DECEB of the next read or write will be
intercepted by the Read/Write routine and
Check will transfer to SYNAD.

Now, if Backspace is entered and
DEBNIOR=1, the last record of the previous
track must be found to accomplish the back-
space. The important thing to determine is
whether the previous track is just a track
containing records or if it has the user
labels. DEBEHT set to one indicates that
there are labels in the first track of the
first extent. DEBNIC pointing to the first
track of the first extent means a backspace
would leave the extents. DEBNIO pointing
to the second track of the first extent
means a backspace will get into the labeil
track if there are labels. If the first
extent is only one track in length, it will
contain labels if there are labels. When
DEBNIO is in the first extent and neither
the first nor the second track is pointed
to by DEBNIO, then it is safe to backspace
to the last record on the previous track.

Note 2: The Read/Write routine will per-
form I/0 from the DEBNIC address if DEBBP
1s on, and will then turn DEBBP off.

DEBBP is turned on by the Backspace rou-
tine and DEBNH is also turned on if Back-
space encounters error conditions. It is
assumed that Read/Write will intercept an
1/0 request to the data set when both the
above bits are on, and that Check will
transfer to SYNAD when checking that DECB.

Control Routine (CZCRER)

The Control routine performs magnetic
tape positioning, card reader stacker
selection and/or printer channel skipping.
Control builds an IORCE containing appro-
priate CCWs, and executes it via the IOCAL
SVC which invokes the I/0 Supervisor. {See
Chart GD.)

resident in virtual
privileged,

Attributes: Reentrant,
storage, closed routine,
nonrecursive.

Entry Point: CZCRBS -- Entered via type-1M
or type-2 linkage.

Input: The following parameters are
passed:
Register 0 -- Two-character operation code

and count modifier.
Register 1 ~-- Address of DCB identifying
I/0 device.

86 Part I: BAccess Method for BSAM,

Data References: CHADCB, CHADEB, CHAIOR,
CHADEC, CHASDA. °

Modules Caliled:

AWAIT (CEAP7) -- Await an interruption.
IOCAL (CEAAC) -- I/0 call.

Exits:

Normal -- Return to calling routine.
Error --

e Abnormal termination via ABEND macro
instruction.

e Exit to SYNAD routine.

Operation: Imnitially, the IORCB is
cleared. Then it is completely filled in
with the appropriate CCW as well as the
address of the SAM Posting routine.

When the IORCB is complete, the IOCAL is
executed. If the requested operation is
REW or RUN, control is then returned to the
calling routine. However, for all other
requested operations the DECB is tested to
determine if the operation is complete. If
not complete, the AWAIT macro instruction
is executed to wait for completion of this
event. When the initiated operation is
completed, the DECB is tested for error
indicators.

Upon successful completion, control is
returned to the calling routine. For
unsuccessful completion, the user®'s SYNAD
routine is given control. If there is no
SYNAD routine and errors exist, the task is
abnormally terminated.

ASCII Translation and Conversion Routine
(CZCWA) /

Users may read or write physical sequen-
tial data sets encoded in ASCII with ANS
(American National Standarxd} label and
record formats provided the storage medium
is magnetic tape. Since TSS/360 processes
internally in EBCDIC and standard IBM label
and record formats, this routine is
required to provide an interface for ASCII
users. On input, this routine translates
ASCII to EBCDIC and converts ANS formats to
the standard IBM formats. On output, it
translates EBCDIC to ASCII and converts
standard IBM formats to ANS formats. (See
Chart GE.)

Attributes: Reentrant, resident in virtual
storage, read-only, privileged,
nonrecursive.

Entry Point: CZCWAl -- Entered via type-1

linkage.

MSAM, TAM and IOREQ

Input: Register 1 contains the address of
a tnree-word parameter list:

word 1 - Byte 1 - X'C1°
X*'cs5*

for output
for input

Byte 2 - X'00° (unused)

Bytes 3 and 4 - Length of record
or block

word 2 - Address of buffer area

word 3 - Address of DCB

Mmodules Called: None.

Exits:
Normal --

¢ Return to caller via BR 14
code 0 in register 15.

with return

e On input only, register 1 on return
will contain the number of bytes
shifted to overlay any block prefix.

Error -- Return to caller via BR 14 with
one of the following return codes in
register 15:

X*04® - First byte of parameter list not
X*'C1' or X'C5'

X'08' - Buffer offset greater than 99
Tables and Work Areas: CHADCB, CZCWZA

{(ASCII-to-EBCDIC translation table), CZCWZE
{EBCDIC-to-ASCII translation table)}.

Operation: On input, after reading a reco-
rd, where the user has defined his data set
as ASCII, SAM Posting and Error Retry calls
this routine to translate the record to
EBCDIC. On output, before writing a reco-
rd, BSAM Read/Write calls this routine to
translate from EBCDIC to ASCII.

ASCII Translation and Conversion
provides:

1. A character-for-character translation
interface between EBCDIC and ASCII.

2. conversion of values in block and
record descriptor fields to unpacked
decimal (ocutput) or binary (input)
where records are format-D
(variable~length).

3. On input, evaluation of block or reco-
rd format and resultant shifting of
records to overlay any block prefix.

4. On output, a block prefix of 4 bytes
if specified by the user.

Section 6:

American National Standard record 1oi-
mats provide for an optional block prer:x
which may precede the first or only logical
record in eack block. This prelbix may con-
tain user data and, for format-L (variable-
length) records, the block length in the
block descriptor field. The ASCII user,
entering data sets from tape, may tell the
system (in either his DDEF command or his
label) tc expect a block prefix; he may
specify up to 99 bytes. Any data in the
block prefix, other than the block length,
will not be available to him, however.
ASCII Translation and Conversion saves the
value (the block length) in the block
descriptor field (the last four bytes of
the block prefix) and then shifts the first
or only record left, overlaying the block
prefix. The end of the record is zeroed
out. On output, a user may specify only 0
or 4 bytes of block prefix, and then only
if format-D records are specified. When a
4-byte block prefix is specified, it will
contain a block descriptor.

_The length of the block prefix is speci-
fied by the buffer offset. The differences
between American National Standard and
standard IBM label formats are slight;
difference is the existence of a buffer
offset field in the second headexr label
(American National Standard). 1If the user
specifies or defaults the buffer offset
(BFOFF) parameter in the DDEF command, the
buffer offset field in the label determines
for ASCII Translation and Conversion the
number of bytes of input block prefix to
handle.

one

The translation and conversion inter-
faces provided by this routine are illus-
trated in Figures 10 and 11.

Additional information on label and
recoxrd formats, both standard IBM and
American National Standard, for magnetic
tape volumes is contained in Appendix A of
pata Management Facilities, GC28-2056.

BUFFERING SERVICES

The following four routines are provided
to allocate a pool of buffers and permit
easy access and release of the buffers
within the pool.

GETPOOL Routine (CZCMB)

The GETPOOL (get a buffer pool) routine
fills the buffer length and the numbexr of
buffers field in the DCB. (See Chart HAa.J

Attributes: Reentrant, resident in virtual
storage, closed routine, read-only, public.

Entry Point: CZCMBG equated to SYSMBG --
Entered via type-1 linkage.

Routines Specifically Designed for BSAM 87

ON
INPUT:

A buffer offset (block prefix length) of 0-99 bytes is supported in oll formats.
The user specifies the buffer offset in either the tape label or the DDEF command.

FORMAT F records-blocked and unblocked {blocked shown here)

Data Dato Data
(ASCI1 (ASCH) (ASCIN)

is translated to EBCDIC ond the BSAM user READs ..

Data Data Data
(EBCDIC) | (EBCDIC) | (EBCDIC)

the QSAM user GETs., ..

Data
(EBCDIC}

. (three times}

FORMAT U records

Data {(ASCH)

is translated to EBCDIC ond tne BSAM user READs. ..

Data (EBCDIC)

the QSAM user GETs. ..

Dota (EBCDIC)

FORMAT D (varicbhle-length) records

if the buffer offset is specified as 0... blocked or

unblocked (shown). ..

dddd Dato (ASCH)
becomes. ..
LLoo | ffoo Data (EBCDIC)

1f the buffer offset is specified as 4, . .blocked
{shown) or unblocked. ..

A dddd Data (ASCHY 1dddd

becomes. ..

LLOO | 00 | Data (EBCDIC) | P00

{f the buffer offsetis specified as other than C or
4. . .blocked or unblocked. , .

Daota Dota
dddd
(ASCIHH) (ASCIH)
becomes. ..
Data Doto
LL00 | tloo (EBCDIC) ttoo (EBCDIC

!
Zeroes

*Does not have to contain DDDD: BSAM colculates and creates correct LL00.

In all Formot D cases, whatever the
buffer offset (0-99)...

unblocked,

the BSAM user READs. , .

LLoo | ftoo | Data
(EBCDIC)

not
present

4 or less

blocked,
the BSAM user READ:s., ..

Data

(EBCDIC) oo

LLoO § ffoo

blocked ond unblocked,
the OSAM user GETs. ..

oo Dota {EBCDIC)

However, LLOO will exist in the
system buffer for each Format D
unblocked record or block.

dddd is the record (length) descriptor in ASCH format; a 4-byte value in unpacked decimal.
P00 is the record (length} descriptor in EBCDIC format; 4 = a value in binary; 00 = Zeroes {unused).
DDDD is the block {length) descriptor in ASCIl format; o 4-byte value in unpacked decimal.
LLOO is the block (length} descriptor in EBCDIC formot; LL = a value in binary; 00-= Zeroes {unused).

Figure 10.

88 Part I:

Access Method for BSAM,

How TSS/360 Handles ASCII Record Input

TAM and IOREQ

ON
QUTPUT:

For Formats F and U, no buffer offset {block prefix} is allowed.

For Format D, a buffer offset of 0 or 4 moy be specifiea.

FORMAT F and FORMAT U records - blocked ond unblocked

Dato (EBCDIC)

becomes

Data {ASCID

FORMAT D (variable-length) records - blocked or unblocked

If o buffer offset of O is specified. ..

LLoo | thoo | Dota oo | Date
(EBCDIC) {EBCDIC)
becomes. ..
Dota Dato
d
dddd (ASCII) dddd (ASCID)

If o buffer offset of 4 is specified, the
EBCDIC block above becomes. ..

Data

DDDDY dddd

(ASCI)

Datc

dddd (ASCID

block descriptor onoutput.

to supply his own LLOO.

See Figure 10 for the meaning of dddd, etc.

Notes: The BSAM user must calculate and supply his own LLOO and #00 and specify buffer offset = 4 if he wonts a

The QSAM user must specify buffer offset = 4 if he wants a block descriptor even though he does not have

Figure 11.

Input: The following parameters are

passed:

Register 0:

0 15 16 31

where NN - number of buffers requested.

LL - length of each buffer in the
request.

Register 1 -- Address of DCB.

pata References: CHADCB, CHADEB, CHAISA,
CHAVPS.

Mmodules Called: None.

Exits:

Normal -- Returm to caller.

Section 6:

How TSS/360 Handles ASCII Record Output

Error -- ABEND macro instruction.
Operation: The routine will ABEND if the

DCBID is not valid. The routine also
ABENDs if a buffer pool has been previously
assigned, if the buffer length or block
size exceeds 32,768 bytes, or if the number
of buffers exceeds 255. GETPOOL inserts
buffer length and number of buffers into
DCBBUF and DCBBUN respectively. The rou-
tine sets on bits corresponding to DCBBUF
and DCBBUN in DCBMSK if the DCB is open.

GETBUF Routine (CZCMA)

The GETBUF {get a buffer) routine finds
an available buffer in a buffer pool and
returns a pointer tc it. When the GETBUF
routine is entered for the first time, the
buffer page list, which describes the loca-
tion of all the buffers for this DCB, is
built, the buffer pool is allocated, and
the first available buffer is obtained.
(See Chart HB.}

Routines Specifically Designed for BSAM 89

resident in virtual
reentrant, public.

Attributes: Read-only,
storage, closed routine,

Entry Point:

entered via type-l1

CZCMAG equated to SYSMAG --
linkage.

Input: Reglster 1 contains the address of
the DCB. :
Data References:
CHAISA, CHAVPS.

CHADCB, CHABPL, CHADEB,

Modules Called:
VMA (CZCGA) -- Get virtual storage.

CKCLS f{CEAQ4) -- Check protection class.

Exits:
Normal -- Return to calling program.

Error -- ABEND macro instruction.

Operation: GETBUF will ABEND if the DCBID
is not valid, or if the DCB is not open.

If this is the first entry to GETBUF, a
buffer page list must be built. GETBUF
ABENDs if the buffer length is too large orx
if buffer length and blocksize are both
zero. When only buffer length is zero, and
access is for other than QSAM, and the
device is direct access, the actual size of
the buffer is computed by GETBUF by adding
the key length to the blocksize. GETBUF
determines which cutoff constant is to be
used and calculates the total number of
pages needed for the buffers, and the buff-
er page list.

GETMAIN is used to obtain the needed
pages. GETBUF maintains the count of
available buffers and enters the buffer
addresses into the Buffer Page List.

FREEBUF Routine (CZCNA)

The FREEBUF (free a buffer) routine
makes available a buffer which was pre-
viously obtained and made unavailable by
the GETBUF routine. (See Chart HC.)

Attributes: Reentrant, resides in virtual
storage, closed routine, read-only, public.

Entry Point: CZCNAF egquated to SYSNAF --
Entered via type-1 linkage.

Input: The following parameters are

passed:

Register 0 -- Address of buffer to be
released.

Register 1 -- Address of DCB.

pata References:
CHAVPS, CHAISA.

CHADCB, CHABPL, CHADEB,

90 Part I1:

Modules Called: Nenco.

Exits:

Normal -- Kkecturn to callaing program.
Error -- ABENL macro instruction.

Operation: The sddresses of buffers in
CHABPL are searched to find a match for the
address passed in register 0. When a match
is found, the In-Use flaqg for that puffer
is turned off in the CHABPL, and BPLNBF
(number of free buffers) is incremented by
one.

FREEBUF exits tc ABEND if the DCB iden-
tification is ncot valid, if GETBUF has not
been called, if the buffer to be freed is
not in the pool, or if the buffer to be
freed is already free.

FREEPOOL Routine {CZCNB)

The FREEPOOL (free a buffer pool) rou-
tine releases all virtual storage which was
assigned to a DCB as a buffer pool. (See
Chart HD.)

Attributes:
storage,

resident in virtual
read-only, public.

Reentrant,
closed routine,

Entry Point: CZCNBC equated to SYSNBC --
Entered via type-1 linkage.

Input: Register 1 contains the address of
the DCB for the data set which last used
pool.

Data References:
CHAVPS, CHAISA.

CHADCB, CHARBPL, CHADEB,

Module Called:
storage.

VMA (CZ2CGA)} -- Free virtual

Exite:
Normal -- Return to calling program.

Error -- ABEND macrc instruction.

Operation: FREEPOOL ABENDs if the DCBID is
not valid, or if the access is QSAM and the
DCB is open.

Unless the Buffer Page List pointer is
zero, the number of pages in the puffer
pool is determined irom 8PLNPG, and FREE-
MAIN is called to release those pages.

FREEPOCL zeros the 2uffer Page Lint

pointer, and the butfer length and pumter
of buffers fields 1in the DCB.

BSAM INTERNAIL CONTROL ROUTINES

The internal centrol routines include
the message writing, tape positioning, and
volume serial field finding routines.

Access Method for BSAM, MSAM, TAM and IORE(Q

Tape Positioning Routine {(CZCWP)

The Tape Positioning routine positions a
tape volume to any of three positions. The
positions are shown in Figure 12. (See
Chart IA.)

Attributes: Reentrant, resides in ritual
storage, subroutine, privileged.

Entry Point: CZCWP1 -- Entered via type-1
linkage.

Input: Register 1 contains the address of

the SAM communication block. SCEPOS con-
tains the code which indicates which tape
position is desired.

Data References: CHADEB, CHASCB, CHASDA,
CHATDT.

Modules Called:

control (CZCRB) -- Tape positioning.

Message Writer (CZOWM) —-- ABEND processing.

Build DEB (CZCWB}
volume switch.

-- Update DEB after

Bump (C2CAB) -- Mount next volume.

volume Sequence Convert (CZCWV) -- Deter-
mine if there is another volume.

Exits:

Normal -- Return to the calling routine.

Exror -~ Call Message Writer to do ABEND

processing.

Operation: Positioning is always relative
to the tape marks on a volume. It is
assumed that unlabeled volumes contain data
sets separated by single tape marks, and
that labeled volumes contain data sets with
a single tape mark separating header labels
- and data, and a single tape mark preceding
trailer labels.

tabeled Tape
b
[ERE N Pt PpTgd T
RIMIR Heoder Lobels R jM] R} Date [R |M|R Trailer Lobels [R |[M|R
G G G G G G . G G
2
k Position | Position 3 —/I Porition 2 —/
Unlobeled Tape
1yTh R
R | MR Data RIMIR
G G G G
Position 1 ——-/ Position 3 -——/ \x-- Position 2

Figure 12. Tape Positions

Section 6:

The number of forward or backward spoces
to be made must first be caiculated. The
calculiation is made from the position code,
the current tape mark count and the logical
data set sequence number in the JFCB.

The present position on the tape volume
is known from the tape mark couat which
indicates how many tape wmarks are behind
the presert position. For example, in
Figure 13 there are unlabeled data sets on
a tape volume (the current positioning is
indicated); the tape mark count at this
position would be two.

Calculating the Position to Which the Tape
is _to be Moved: A temporary data area,
TFN, is set to the relative physical
sequence number of the current data set of
the current volume. This is calculated by
subtracting the first logical file (datsz
set) sequence number on the mounted volume
(TDTLFN - 1) from the logical file sequence
number (TDTPSQ) of the data set which the
user requested (TDTFSQ - TDTLFN + 1). For
example, in Figure 13 the TDTFSQ contains a
2 if this is the only volume, indicatiag
that current positioning is somewhere
within the second data set on the volume,

It should be noted now that one tape
mark follows every data set on an unlabeied
tape volume. Similarly, since there are
three tape marks associated with each data
set on labeled tape, multiplying the phys-
ical sequence number of the current data
set (TFN) by three, then subtracting one,
yields the exact number of tape marks pre-
ceding the first TM of the current data
set.

Now that the number of tape marks asso-
ciated with the data set on which position-
ing is to occur is known, it only remains
to determine how many tape marks beyond the
previous data set are needed to find the
desired new position in terms of tape
marks.

Looking at Fiqure 12, it is clear that
for labeled tape: zero additional tape
marks yields position 1, three additional
tape marks yields position 2, or two addi-
tional tape marks yields position 3. For
unlabeled tape, zero additional tape marks
yields position one, while one additional
tape mark yields position 2. Position 3

- (}irection of Tape movement
| iIuT | LT
R Dara RIMIR Data RIMIR] Data
G G G G G <

W_LOAD POINT \—-(Currenr position of tape volume)

Figure 13. Data Positioning

Routines Specifically Designed for BSAM 91

cannot be found directly now because files
(tape marks delimit files) are being coun-
ted in the forward tape direction. A back-
space file is necessary to obtain position
3 on nonlabeled tapes after forward space
files are completed.

The appropriate number of additional
tape marks is put into a temporary data
area TFA.

Since all information necessary to find
the new position is known in terms of tape
marks, the calculation can be made:

labeled tape TFS = (TFN-1)x3+TFA
or

(TFN-1)+TFA

i

unlabeled tape TFS

TFS is a temporary data area which con-
tains the desired new position in terms of
number of tape marks from the beginning of
the tape volume.

The difference between TFS, the desired
position, and SDATAP, the present position,
1s determined by subtraction. The result
15 the number of files (delimited by tape
marks) to be forward or backward spaced.
The direction to go is indicated by the
sign of the above difference.

The Control routine is used to forward
or backward space the required number of
files.

The following situation may occur when
skipping files forward or backward. The
splution is the same for either case. As
in Figure 14 there is a requirement for
forward spacing.

when forward spacing to the correct
position, the following procedure is fol-
lowed if Tape Positioning was called by
Tape Open:

Labeled tapes - A forward space record
is done to check for a tape mark, which
would indicate the end of the tape. If
a tape mark is encountered and ancther
tape is not specified, an ABEND results.
1f a tape mark is not encountered, thnree
forward space files are done to position
to the beginning of the next data set.

2 P Z 2

Ll Y '
i T BARE
Rim|R ®{M[R R{m{R
G G G G G G

© ‘ 5

A
Desired Position __~ N Position Z

Current Position

Figure 14. Skipping Files on Tape

92 Part I: Access Method for BSAM, MSAM,

This procedure is followed until the
correct file (data set) is reached.

Then another forward space record is
done to check for an end-of-tape condi-
tion. If a tape mark is encountered, a
check i3 made for ancther volume. If
there 10 not another volume and the user
is open for input and reading forward,
his task is ended via ABEND. Otherwise,
the tape is positioned correctly.

Unlabeled tapes - The same procedure is
followed as for labeled tapes, except
only one forward space file is done
after the forward space record.

Multivolume Check - If the JFCB indi-
cates another volume on an end-of-volume
condition, it is mountea, the DEB is
updated, and the tape positioning values
are updated for the newly-mounted
volume. In addition, the logical file
sequence number is placed in the volume
entry (TDTFSQ) of the TDT.

Forward motion of the tape can only
result in position Z or D because spacing
by files (delimited by tape marks) causes
the tape to stop in the interrecord gap
atter the skipped file. Therefore, o
reach the desired position in Figure 14,
files are skipped forward to reach position
Z, and then there is a backward skip of one
file position to the desired position.

vVolume Sequence Convert Routine (CZCHV)

The Volume Sequence Convert routine is
called to determine the address of a volume
serial field within the correct job file
control block (JFCB} within the task
definition table, based on a Relative
Volume Sequence Number (RVS) stored in the

SAM communication block (CHASCB). (See
Chart IB.)
Attributes: Reentrant, nonrecursive, resi-

dent in virtual storage, privileged.

Entry Point: CZICWV1l -- Entered via type-1
linkage.

Input: Register 1 contains the address of
the SAM communication block.

Data Reference: CHASCB.

Modules Called: HNone.

Exits:

Normal -- Register 15 contains one of the

following return codes:
00" Address of the volume serial
field requested is in SCBVCA and
the field is valid.

TAM and IOREQ

*04° SCBVCA contains the address of
a null volume serial field, orx
a null chain field.

08" Volume serial field considered
out of range.

Error -- None.
Operation: The calling program stores the

address of a volume serial field within the
JFCB in the CHASCB, and places a return
code in general register 15 indicating the
result of the search.

The return code setting indicates to the
calling program whether the volume serial
field has been located, and if it has, its
address (stored in CHASCB). Otherwise, the
return code indicates whether the RVS
stored in the CHASCB points to a null
volume serial field and the address of tais
field is stored in the CHASCB; or whether
the RVS points to a volume serial field
which would begin the next chain of volume
serial entries in the JFCB (in which case
the CHASCB contains a pointer to the null
chain field which will be used to point to
the address of the field requested by the
RVS). The return code, on the other hand,
may indicate that the RVS stored in the
CHASCB points to a volume serial field
which does not exist in the current JFCB
(in which case a pointer to the terminating
null chain field is stored in the CHASCB),
or the return code may indicate that the
RVS was zero upon entry, and the address of
the volume serial field pointed to by RVS
has been set to zerxo.

Note: The first volume serial field in the
JFCB is assumed to be 1.

The RVS stored in the CHASCB is not
changed by VOLCVT.

Message Writer Routine (CZCWM)

The Message Writer provides for all the
message handling required by -he SAM Open,
End-Of-Volume, and Close Routines. This
module contains all message text. It
selects the proper method of transmitting
the message to the user or to the operator.
Some standard responses are processed and
returned to the calling SAM modules in the
form of return codes in general register
15.

The Message Writer also handles all
ABEND processing for BSAM. (See Chart IC.)

Attributes: Reentrant, nonrecursive, resi-
dent in virtual storage, privileged.

Entry Point: CZCWM1 -- Entered via type-1

linkage.

Section 6:

Input: Register 1 contains the address of
CHASCB. The two-byte SCBMSG field of

CHASCB is set as follows:

byte 0 byte 1
- — R (e 1
i HAMROO00O | NNNNNNNN |
L —_— ——i —1
o 7 8 15
where H = 0 No header required
1 Message requires header
A =0 ABEND
i Prompting message
M =0 User message
1 Operator message
R =20 No response
1 Response required

and byte 1 is a message ID consisting of
a binary number. There is a unigque
number for each message.

The SCBABN field contains the SAM ABEND
code, if the call is for an ABEND
message.

Data References:
CHADEB, CHALB1.

CHASCB, CHATDT, CHASDA,

Modules Called:

WTO (CZABQ) ~-- Write message to operator.

Gate (CZBAAB) ~-- Print message on terminal
or SYSOUT device.

ABEND (CZACP) -- Abnormal termination of a
task.

Exits:

Normal -- Return to caller.

Exror -- ABEND.

Operation: This routine uses the message
code placed in the CHASCB as an index to
locate the desired entry in the message
control table (MSGTS). A message is then
formed in a buffer area in the PSECT of
this routine. All messages begin with a
prefix, contain a header if the message is
for a user, and end with the message text.

The prefix is built from information in
the CHASCB. It contains the module name of
the caller, the abend code, and the message
code. This uniquely identifies each
message.

when the message is for a user, a header
line is added. This provides the DDNAME

Routines Specifically Designed for BSAM 93

and DSNAME to identify the data set being
provessed.

The phrase or phrases forming the mes-
sage text axre concatenated with the prefix
and header in the buffer area. If neces-
a modification routine is invoked to
complete variable fields in the text. The
compileted message is then transmitted as
indicated by flags in the message conutrol
table.

SATY,

If the message control table flags ind-
icate that a vesponse is required, it is
returned to the user by glacing a pointer
to the response buffer in the CHASCB. If
bie, the response will be interpreted
and & return code set to facilitate testing
by the caller. When the expected response
is not obtained, a retry message is trans-
mitted with the same prefix used for the
original message. This cycle is then
repeated until the proper reply is obtained.

The Message Writer routine is called to
a0 ABEND processing when one of the follow-
ing ronditions occurs:

1. The message code received from the
caller indicates an entry outside the
range cf the message control table or
an entry within the table that is no
longer active.

B

¢ message is

Th too long to be conca-
tenated in the

ruffer available.

3. The modification or response routine
is not available when indicated.

4. No SDAT pointer was available when
required to complete the operator
message.

The tessage Control Table: The message
contrel table contains cone entry of two
words for each message. Each entry, as
illustrated in Figqure 15, has the following
format:

Entry for Single Phose Meusage

LEN Masioge Text

LEN Massage Text

Phrase List /

/

Entry for Multi Phase Message LEN Messoge Text

\

. LEN Meassage Text
etc, n entries

Figure 15. Entry for SinglesMultiple Phase

Message

84 Part I: Access Method for BSAM, MSAM,

!
|Prompting Message text. X 1 X X X % X X

|
|Message for Usex. A X 0 X X ¥ XX

1
|DC A(MSG);Poxnter to message text if PP |
{ {is zerc. Pointer to Phrase |
| |List of PP entries 1if PP is not|
| jzero. |
i |]
|DC *MM* {Code for Modification routine |
] } {00=none). |
| | I
|DC *RR°® jCode for Response routine |
| { {00=none). i
i | !
|BC *PP' {Number of entries in Phrase]
! {List. f
i 1 [
{DC 'FF* [Flags. i
prm e e e e —=ed
i 01 2345467
|Pbo not print header. 0 X X X X XX X |
|
jPrint header. 1 ¥ X XX XX X |
| f
| Abend text. X0 X ¥ X XX % |
i
]
{
!
| !
iMessage for operator. EX 1 XXX HE X |
| |
{No response required. XX X0 XXX X |
| {
[Response required. XXX 1XXZXZX|
L A - H

Find Records pexr Track Routine {CZCRE}

The Find Records Per Track routine com-
putes the number of records on a track of a
direct access device. For a data set of
unknown or wvarying record length, an I0RCE
is set up to read the entire track in order
to find the number of the last record.

{See Chart ID.)

Entry Point: CZCRQA -- Entered via Type-1
linkage.
Input: Register 1 contains the address of

the DCB. DCBRDB contains the address of
the track concerned.

Modules Called: None. The AWAIT and IOCAL
SVCS are issued.
Exits:
Return Code Condition
[8]¢] Normal return.
() I/0 error other than

defective track or °No

Record Found®.

Operation: For fixed, standard format
records, the record count is computed and
stored in the DCBRDR field. & return to
the calling routine is then effected.

TAM and IOREQ

For record formats other than ftixed, or
{ixed but not standard, an IORCRHR 135 built,
and an IOCAL issued, which returns the
record count to a data area in th2 PSECT.
The count 1s then stored in the DCBRDR
field of CHADCB.

This count 1is also stored in the DCBRDR
field if an error return of *No Record
Found' is detected after the IOCAL SVC.

1f the IOCAL return shows that the track
was defective, the alternate Seek address
1is moved into the IORCB and the IOCAL
1ssued again.

Any other exror return from ICCAL causes
Find Records per Track to return a code of
X*04' in register 15.

RELFUL Routine (CZCRR)

This routine converts a relative direct
access device address - of the form TTRZ,
to a full address - of the form RMBBCCHH,
where R is the record numbex, M is the
extent number, CC is the cylinder number,
and HH is the head (track) number. (See
Chart I1E.)

Entry Point: CZCRRA (SYSRRA equated) --
via type-1 linkage.

Input: Register 1 contains the address of
the DCB. DCBRDT contains the relative
address to be converted.
Modules Called: None.
Exits:
Return Code Condition
00 Normal return.
ou Track number is outside

data set.

Section 6:

Operation: The extoent number (M) and reco-
rd number are moved in trom the DEG. The
track number 14 computed and 1t it is on
the first cylinder of the extent, the

cylinder and track (head)
directly into the DCB and
calling modules effected.

are placed
a return to the

If the track is not on the first cylind-
er, the cylinder count is updated until the
track is found, and the cylinder and track
are computed and stored in the DCB. A
return to the calling module is effected.

FULREL Routine (CZCRS5)
FULREL converts a full DA device address
in the form RMBBCCHH to a relative address
in the form TTRZ. R is the record number,
M is the extent number, BB is the bin numb-
er, CC is the cylinder number, and HH is

the head (track) number. TTRZ represents
the relative track and record numbers for
the current volume. (S5ee Chart IF.)

ry CZCRSA (SYSRRA equated) --
via type-1 linkage.

Input: Register 1 contains the address of

the DCB.

Modules Called: None.

Exits: Return to the calling routine. No
return code.

{
Operation: The address is converted to the
TTRZ form where the R of TTRZ is set to the
R of RMBBCCHH minus one, the Z is set to
zero, and the track is computed by adding
the number of tracks in the extents. The
remaining fields of DCBRD are set to zerc.

Routines Specifically Designed for BSAM 95

PART

VIRTUAL ACCESS

IX

METHOD ({(VAM)

The data management facility discussed
in this section is the virtual access
method (VAM). There are three organiza-
tional methods: virtual sequential, virtu-
al indexed sequential, and virtual parti-
tioned, which are designed for use with
TSS/360. All incoming and outgoing data
processed by the virtual access methods is
organized in units of pages which are 4096
bytes in length and stored on direct access
devices.

TSS/360 VAM is designed to minimize the
number of virtual storage pages associated
with an open data set. VAM brings into
virtual storage only those data set pages
currently needed for user operation.

In this section, the implementation of
VAM is presented using seven subdivisions:

* A general description of VAM including
its unique characteristics and its spe-
cial capabilities.

e A description of error recovery techni-
gues used for VAM data sets.

e A description of the volume format and
the manner in which data sets are main-
tained on such a volume.

» Data set sharing - a detailed discus-
sion on one of VAM's more important
facilities.

e Open and Close processing -~ that part
of VAM processing common to all the
access methods.

e The virtual sequential access method.

+ The virtual indexed sequential access
method.

* The virtual partitioned access method.

Where practical, individual routines
will be presented immediately following the
particular facility they support. The
first of the above subdivisions, a general
description of the virtual access methods,
will occupy the remainder of this section.

VIRTUAL DATA SET ORGANIZATION

As metioned above, the data sets
accessed by the virtual access methods all
reside on direct access storage devices.
The devices supported by TSS/360 are the
2311 and 2314 direct access disk storage

SECTION 1: INTRODUCTIORN

devices. Each device 15 preformatted, in a
manner which will be described later, in
units of 4096 bytes called pages. Although
records in a data set may occupy less than
a page, exactly one page, or more than one
page, the access method deals in terms of
page units.

The general philosophy of the virtual
access methods is closely tied to the con-
cept of relocation excepticns. When a user
issues a request to get or read a record,
the virtuval access method merely adds the
page or pages containing the record to the
requesting task's page tables. This opera-
tion is performed by the Movepage routine
{(CZcoC). That is, the record is read into
the task's virtual storage. When the task
in execution makes a reference to the reco-
rd, a page relocation hardware interruption
occurs. This interruption causes the resi-
dent supervisor to read the referenced page
into main storage by means of its paging
mechanism.

A put or write operation, on the other
hand, results in the actual writing out of
the record as well as the updating of the
page tables. The writing operation is per-
formed by the Movepage routine (CZCOC)
which issues the PGOUT SVC. This SVC is
also serviced by the resident supervisor
and performs the actual writing operation.

Movepaqe Routine (CZQ0C)

Movepage is called by OPENVAM (CZCORA),
CLOSEVAM (CZCOB), VSAM Get (CZCOR), VSAM
Put (CZCOS), SETL (CZCOT), FLUSHBUF
(CZCOT), Getpage (CZCPI), and VISAM Close
(CZCQA) to perform input or output and to
control the use of shared pages by setting
and releasing interlocks. (See Chart JA.)
Attributes: Read-only, public, privileged.
Entry Point: C2COC1l - Entered via type-1
or type-2 linkage.

Input: Register 1 contains a pointer to a
two-word parameter list:
Word 1 ~-- Address of DCB.
Word 2 -- Address of first page of request.

Field DCBN contains the relative page
number of the first data set page of the
request.

Field DCBM contains the total number of
contiguous pages involved in the request.

Section 1: Introduction 99

Field DCBOP contains the type of opera-
tion requested as follows:

‘80° Input request.

*20° Input request with exclusive
read.

fig* Output request.

to2° Release read lock.

01’ Release write lock.

Modules Called:

GETNUMBR (CZCOO1) -- Converts the page
number of a partitioned data set rela-
tive to a member to the relative page
number with respect to the start of the
data set if part of the member has been
moved to an overflow page.

Interlock (CZCOH1) -- Interlocks the
external page entry of a shared data
page or interlocks the entire RESTBL.

Release Interlock (CZCOI1) -- Releases the
above interlocks.

PGOUT {(CEAAl) ~-- Causes the pages of an
output request to be written to external
storage.

SETXP {(CEAH7) -- Adds the pages of an input
request to the task's external page
table so that the supervisor can bring
them into main storage when a reference
to them causes a relocation exception.

RELEXPG (CZCEN1l) -- Releases pages assigned
to the Jata set but not in use.

FINDEXPG (CZCEL1) -- Assigns new pages to
the data set.

Exits:

Normal ~- RETURN macro instruction.

Error --

1. Return with a code of X'04' in general
register 15 if an attempt to perform
an exclusive read failed because the
page was already locked.

2. ABEND is called under the following
conditions:

* An unrecoverable error occurs during
the PGOUT operation.

* The DCB in the parameter list is not
the same as the one in the DCB
header.

* Illegal data set organization

exists.

100 Part II: Virtual Access Method (VAM)

* An output operation is requested on
a data set opened for input. This
is not the case if the output opera-
tion is to output the POD of a par-
titioned data set.

® The request is for input from beyond
the data set limits.

e The operation requested is invalid.
® The DSORG is indexed, and DCBM # 1.

® An error return is received from
GETNUMER.

* An illegal buffer is passed to Move-
page for VI organized data sets.

¢ The PGOUT buffer is not data or
overflow.

Operation: On entry, registers are saved
and base registers are established in con-
formance with linkage conventions. If the
data set is shared, the RESTBL is inter-
locked. If the address of the DCB is not
in the DCB header, or if the data set is
not partitioned and the request is for out-
put when the DCB was opened for input only,
a call is made to ABEND. This latter
operation is valid for partitioned data
sets since the request may be from CLOSEVAM
and be a request to write out the POD.

If the data set is partitioned, the
relative page number must be determined.
The user reference is to a relative page
number based on the start of the member;
this relative page number must be converted
to one based on the start of the data set.
Where part of the member has been relocated
to an overflow page, GETNUMBR is called to
make the relative page number determina-
tion.

After this calculation or if the data
set was not partitioned, the request is
examined further. If the request was for
an output operation on a partitioned data
set opened for input, and the request was
not to output the POD, ABEND is called. If
this error condition does not exist, pro-
cessing continues. The extent of the
requested operation is tested to see if the
pages involved are all within the limits of
the pages currently assigned to the data
set. If the data set limits will be
exceeded by the request, ABEND is called.
If all is in order, the processing con-
tinues. From this point on, the processing
differs according to the type of request.

Output Operation: In general, the output
of data set pages is accomplished by means
of the PGOUT SVC. The processing in Move-
page consists of building a parameter list
and issuing the SVC. The parameter 1list

for PGOUT contains the first page involved,
the number of pages, and the virtual
storage address of the first external page
¢ntxy. The page entries must be converted
from the format used in the RESTBL {reia -
tive volume number-relative external pago
number), to a format suitable to the PGOUT
processuy (symbolic device address-external
page number). This conversion is accomp-
lished by directly indexing into the volume
tzble and appending the SDA to the given
external page number. This parameter is
tiren placed in the PGOUT list. This pxo-
cess 1s repeated, page by page, until ali
pages involved have been placed in the
parameter list or until the maximum of 8§
entries have been placed in the list. When
either of these conditions is met, the
PGOUT SVC is issued and the transfer of
pages is accomplished. On return from
PGOUT, the data set is tested to see if it
is duplexed (see duplexing later in this
section). If it is, the same parameter
list is used to write the pages to the
secondary copy of the data set. When both
copies have been written out, the procedure
is repeated, if necessary, for each suc-
ceeding group of 8 pages until the regquest
has been satisfied.

Once this has been done the exit proce-
dure is entered. This entails the release
of RESTBL and page interlocks set on shared
data set pages and RESTBLs, and a return to
the calling routine.

Non-output Operation: Operations which are
not output may be simple input operations
on a nonshared data set, input from a
shared data set, a read exclusive request
for a shared data set, or a request to
release a read or write interlock on a
shared data set page. If none of these
operations is indicated, a call is made to
ABEND.

If the request is for a simple input
operation on a nonshared data set, the vir-
tual storage address of the first page in
the request is computed and placed in the
parameter list for SETXP. As with the
parameter list constructed for PGOUT, these
page entries must be converted to a form
acceptable to the SETXP processor. The
conversion process is identical. Page
entries are converted one by one and placed
in the parameter list until the list maxi-
mun of 64 entries is completed or until the
requested page entries are all in the list.
The SETXP SVC is then issued. This action
results in the placement of the pages
involved in the external page table of the
task. Any future reference to the pages
will result in a relocation exception which
can now be processed by the resident super-
visor. 1If there are more than 64 pages
involved in the requests, this process is

repeated until all requested pages have
been placed in the external page table.

If this input request was not received
from Open, the number of checked out page:
is updated. After that or if the reguest
was from Open, control is returned to the
calling routine.

The procvessing of inpuat requests for
shared data sets is basically the same as
for nonshared data sets. The only dif-
ference is that page level interlocks must
be set and released in certain operations.
If the data set organization is other than
VISAM, no interlocks must be set, so the
above input processing is entered. The
parameter list for the SETXP SVC is estab-
lished and the SVC is issued. If the data
set is VISAM but the request is for a di-
rectory page the same processing occurs.

when the request is for a data page of a
VISAM data set, one of two interlocks must
be set on all pages involed in the request.
For data sets opened for input or for
operations other than read exclusive, a
read interlock is set on all pages; for a
read exclusive request, a write interlock
is set. The significance of these inter-
locks and the manner in which they are
imposed is discussed in the section on
sharing.

Once the type of interlock has been
determined, the pages are examined to see
if an interlock is already set. This
occurs when an exclusive read request is
made for a page which is already in use.

In such a case, a return is made to the
caller with a return code of *'04' to indic-
ate that the page is not currently avail-
able. If the page is not already locked, a
call is made to Interlock to impose the
proper interlock on all pages. This inter-
lock is not imposed if the call to Movepage
is for a read request from the dynamic
loader. Following the setting of appropri-
ate interlocks, the parameter list is builxt
and the SETXP SVC is issued as for non-
shared input requests.

After the SVC has been processed and
control has returned to Movepage, the numb-
er of pages checked out is updated for alil
requests except those from Open, the RESTBL
interlock is released and control is
returned to the calling routine.

The remaining function performed by
Movepage is the release of the page level
interlocks set for input requests on the
data pages of a VISAM data set. The inter-
locks set can be either read or write. The
type of interlock is determined and passed
to the Release Interlock routine as a para-
meter. Once the interlocks on the pages
have been released, the interlock on the

Section 1: Introduction 101

RESTBL is released by again calling Release
Interlock, and control is returned to the
calling routine.

THE _ACCESS METHODS

Ascsociated with each of the organizia-
tional methods is an access method by which
the user may access records in his data
set. These access methods are: the virtu-
al segquential access method (VSAM), the
virtual indexed seguential access method
{(VISAM) , and the virtual partitioned access
methed {(VPAM). This last facility is not
an access methed in the normal sense of the
term. VPAM contains no routines for the
actual reading or writing of records. A
virtual partitioned data set is a collec~
tion of other data sets which a user has
comhined for ease of reference. These sub-
sidiery data sets are called members and
each member is i1tself organized as a virtu-~
al seguential or virtual indexed sequential
data set. 1t is by mweans of the other
access methods that the records of a memberx
are actually read into the task®'s virtual
storage.

VEAM provides the additional control to
perform the following functions on members:

s To create or add to a virtual parti-
ti1oned data set.

¢ To prepare any member of a virtual par-
titioned data set for processing.

s To add new members to, or delete exist-
ing members from an existing data set.

s To update existing members in place.

The virtual sequential access method
provides the user with access to records
that are located in logically sequential
locations in his virtual storage. Because
of the nature of the virtual storage con-
cept, these records may Oor may not be 1in
sically sequential locations in main or

pny
external storage, but they may be conceived
of as being sequentially organized for pro-

;

cessing purposes. Tables maintained by the
data management routines and by the resi-
dent supervisor make this type of proces-
sing possible. The manner in which this is
done 1is described in detail in the section
(o351 e virtual sequential access method.

The virtual sequential access method
{(VSaM) processes virtual sequential data
sets and virtual sequential members of par-
titioned data sets. It can be used for any
of the following functions:

e To create or extend a virtual sequen-
tial data set or virtual sequential
member of a partitioned data set.

102 Part II: Virtual Access Method (VAM)

e To delete all records in an existing
data set or member, from a specified
record to the end of the data set.

* To retrieve the logical records ot the
data set or member in a seguential
manner.

» To update ar existing record of the
data set or member in place.

The virtual indexed sequential access
method provides the means by which a user
can access records in a virtual indexed
sequential data set. Such data sets con-
tain records which are not sequentially
located in virtual storage. Each record is
associated with a key which is contained in
the record in storage. The lowest record
key in each data page, except the first
data page, of a virtual indexed sequential
data set is also entered in a directory
which is associated with each such data
set. By referencing the keys associated
with the records in a sequential manner,
the user may process his data set as a
sequential data set. Optionally he may
access records in a nonsequential manner,
selecting the records he wishes in any
order by referencing the appropriate keys.
This processing is detailed in the section
on the virtual indexed sequential access
method.

The wvirtual indexed sequential access
method (VISAM) processes virtual indexed
sequential data sets or indexed sequential
members of partitioned data sets. It can
be used for any of the following functions:

e To create a virtual indexed sequential
data set or member in a seguential
manner.

» To retrieve the logical records of the
data sgt or member in a sequential or
nonsequential manner.

¢ To update records in a sequential or
nonseguential manner.

¢« To insert records in logical sequence
within the data set or member.

» To delete selected records from the
data set or member.

FACILITIES PROVIDED BY VAM

In addition to the restriction that thoy
reside only on direct access devices, VAM
data sets are characterized by two facili-
ties that they provide for the user.

The first VAM facility is the sharing >f
data sets. A user may elect to share his
data set with other users. When he does

this he 1s known as the data set owner and
any user who shares the data set with him
1s known as the sharer. The extent to
which the sharer may use the data set is
determined by the owner when he permits the
sharing. He may permit read only access,
read-write access, or unlimited access.

The sharing of data sets necessitates
the use of interlocks which prevent two or
more users from simultaneously accessing
the data set. These interlocks and their
use, as well as the rules for sharing data
sets and the routines involved in the shar-
ing process, are discussed in the section
on sharing.

The second of these facilities is dup-
lexing. This facility provides the user
with an error recovery capability by allow-
ing him to maintain two identical copies of
his data set. The user specifies this
option by opening his data set with the
DUPOPEN macro instruction rather than with
the OPEN macro instruction. The net effect
cf this is to link two identical DCBs
together and to flag his data set RESTBL as
duplexed. The duplicate copy is updated by
the Movepage routine as previously
described and, other than the DUPOPEN macro
instruction, the user processes his data
set as he normally would and does not con-
cern himself with the duplexing operation.

VAM ERROR RECOVERY TECHNIQUES

Two routines are used by data management
to attempt error recovery, or to allow the
user to make the decision to attempt reco-
very, rather than cause an ABEND to destroy
the user's task.

The Virtual Memory Input Error Recovery
(VMIER) routine is invoked when an error is
encountered on an input operation taking
taking place on a direct access device. If
the user has maintained a duplexed data
set, the secondary copy is used to replace
the error page in a newly assigned external
location of the primary data set, and pro-
cessing continues.

The VAM Data Management Error Processing
{(VDMEP) routine is designed to process most
errors occurring while manipulating data
sets., The data set in question is closed
out, appropriate diagnostics are generated,
and control returned to the user.

VMIER and VDMEP are not to be confused
with VMER (Virtual Memory Error Recording)
and VMSDR (Virtual Memory Statistical Data
Recording); these modules are called by
certain access methods posting routines and
are described in System Service Routines,
GY28-2018.

VMIER Routine (CZCEI)

The Virtual Memory Input Error Recovery
routine is a public, read-only, privileged,
system routine which is called by the Task
Monitor to attempt recovery from an input
error occurring on a direct access device.
(5ee Chart JB.)

Entry Point:

CZCEI1 - Entered via type-1
linkage.

Input: None. The ISA must contain:

ISAORV =-- Virtual storage address into
which the error page was to have been
read.

ISACRE -- External page address from which
the error page was to have been read.

Modules Called:

SETXP (CEAH7) -- Sets the task's external
page table tc point to the secondary
copy of a duplexed data set so that a
good copy of the error page may be
obtained.

PGOUT (CEARAl) -- Causes the secondary copy
of the error page to be written to a new
primary copy location.

FINDEXPG (CZCEL) -- Assigns a new data page
to the data set. This page will replace
the error page and the secondary copy of
the copy of the error page will be writ-
ten to it.

Interlock (CZCOH) -~ Places an interlock on
the RESTBL and the external page of a
shared data set.

Release Interlock (CZCOI) -- Releases the
aboye interlocks when appropriate.

WTL (CZABQ) -- Writes a message to the sys-
tem log when a PAT page is in error.

WTO (CZABQ) -- Informs the operator of a
successful recovery.

GATWR (CZATC) -- Writes a message to the
task's SYSOUT when a PAT page of a priv-
ate volume is in error.

ABEND {CZACP) -~ Abnormally terminates a
task under certain errcor conditions.

DSCB/CAT Recovery (CZUFX) -~ If the error
page is in USERCAT or SYSCAT data sets.

Exits:
Normal -- Return to the task monitor.
Error -- ABEND is called under the follow-

ing conditions:

Section 1: Introduction 103

¢ The erroxr occurred on an auxiliary
paging volume.

® An unrecoverable error occurred on 2
data page {data set nor duplexed).

«
6 w3

he device on which the erxror >Sccurred
28 not a direct access device.
side the limits

¢ The eyyor page is out

of the device.

&

No mditﬂxﬂg external page entyy is
i i in any open data set,

® Ap 2ryor page is found to be in the
zoondary copy of & duplexed data set.

the thirad,

I b o N PR [
nditions listed are

fourth, and seventh
impossible
g a propexrly functioning superxvi-
They shonld be taken to mean bad

SOE .
parameters.

WNE&Q

es

provides the processing
system to make use of the
2 in virtual organization
ﬁnﬁn an inpot erroxr OCCurs on 4
nrlmaty data page for such a data set, the
secondary copy of the data page is read and
rewgitien to 2@ newly assigned primary data
page location in extermal storage.

When first entered, YMIER saves the
vt xpgzwta’s and establishes hase regis~
the CSECT, PSECT, and SDAT. It
igeks the SDAT by means of the Test
snd Set instruction and iocates the SDAT
cntry for the device on which the error
cocurres. If the error occurred on a
device ocher than direct access or on an
auxiliary paging device a call is made to
ABEND. The same call is made if the error
page is found to be outside the limits of
the dewice.

The eryor page is next classified as

ng & PAT page, a DSCB page, or a data

If it is a PAT page, the page is
iocked and all the page entries on the page
are set unavailable for assignment, by set-
ting the number of users currently assigned
to the maximum of 127. This process
iavelves a call to PGOUT to write out the
pGated PAT page. Thoss pages represented
the PAT page in error, are shown
wavaliabie for assignment in the SDAT en-
try for the device and the PAT page lock is
released. WTL (CZABQ) is called to make a
note in the system log concerning the
error. If the volume is private a message
is written to the task®s SYSOUT via GATWR
(CZATC). After this, or if the volume was
public, a return is made to the task
monitor.

104 Part II: Virtual Access Method (VAM)

If the error page is not a PAT page, the
PAT page is locked and the error page is
examined. If the page is already marhed in
errcr, an attempt has been made to read an
errcr page and ABEND is called {since other
VAM routines, especially OPENVAM, will pre-
viously have relocated all known error
pages}. If this 1s not the case, the page
is examined to determine if it is a DSCB
page or a data page.

For a DSCB page, the entry in the PAT is
marked in error and the error page is
rewritten to its original location. This
should permit the page to be input correct-
ly i{that is, without parity errors} on sub-
sequent references and prevent superfluscus
calls to VMIZR. The resulting data erxors
wili be detected via checksum validation by
those VYAM routines which read cr write DECB
pages that is, VAMOPEM, ADDDSCB, WRITDSCH,
CATVRM, etc. Both of thegse operations
involve calls to the PGOUT processor. If
the DSCB page is determined to be for the
system catalog data set (SYSCAT), a call iz
made to the DSUBsCatalog Recovery routine
to rebuild the catalog; the error page is
not vewritten 1o its oviginal locati
Following thisz, the SDAT lock is released
and control is returned to the task
monitor.

When the error page is found to be
neithex PAT noxr DSCB, the chain of JFCBs in
the TDT is searched in an attempt to locste
the data set which contains the error page.
This is done by scanning the RESTELs of all
open i{that is, currently in use} VAM {on
direct access) data sets for z match. IF
the entire chain of JPCBs is checked
without finding a match, ABEND is called
since this indicates a possible VAM mal-~
function (no page should be input which is
not part of some VAM data set). During the
seaxrch all RESTBLs for shared data sets are
locked while being checked and unlocked
afterwards. If the secondary RESTBL is
located first, the primary RESTBL is used
to cbtain header information needed foxr the
scan {(as this information is identical for

th RESTBLs but is maintained only in the
primary RESTBL header}. Both primary and
secondary RESTBLs will eventually be
searched for the proper external page en-
try. If the RESTBL does not contain the
page, the next JFCB in the chain is retri-
eved and the searxch continues.

Once the error page entry has been
located in a RESTBL, its entry in the PAT
is set to indicate the page is in error.
Since recovery is possible only for dup-
lexed data sets, if the set is nonduplexed,
a call is made tc ABEND. This is also done
if the data set is duplexed but the error
occurred on the secondary copy since the
secondary copy will only be read by VMIER
when trying to recover from an error to the

failing primary copy. Whether duplexed or
not, the error page is checked to see if it
1s in the USERCAT or SYSCAT data sets; if
so, a call is made to CZUFX to rebuild the
catalog and return is made to the task mon-
itor. If the error page is in the primary
copy, recovery is possible so the secondary
copy address is set in the external page
table via a SETXP call. A call is then
made to FINDEXPG to assign a new page to
contain the primary copy, that is, the
error page replacement in both the RESTBL
and the DSCB for the data set. When the
new page has been assigned, PGOUT is called
to write the secondary copy to the new pri-
mary location. Write to Operator is then
called to inform the operator of a bad page
on one of the system packs and, incidently,
that VMIER was invoked successfully; all
interlocks are then released and a return
1s made to the task monitor.

VDMEP Routine {CZCgK)

The VAM Data Management Error Processing
{VDMEP) routine processes all the errors
detected while mainipulating a data set.
VDMEP will close the data set which caused
the error, release the interlocks set, and
transmit diagnostic messages to the user's
SYSOUT. VDMEP is called by the VDMER macro
expansion or by ABEND (CZACP).

If the task is conversational, control
is returned to the terminal; otherwise the
task is deleted. (See Chart JC.)}

Entry Points:
CZCQK1 -- Entered from expansion of the

VDMER macro.

CZCQK2 -~ Entered from CZACP (ABEND) when
ABEND receives a recursive call while
processing a VDMEP request.

CZCQK3 -~ Entered from CZACP (ABEND) when
ABEND has successfully completed a VDMEP
request.

Input:

For entry at CZCUK2Z2 and CZICQK3, there are
no parameters passed.

For entry at CZICQKl, register 1 contains
the address of the following parameter
list:

Word 1 ~- Address of DCB for the data set
in error.

Word 2 ~-- Pointer to an B8-character Message
ID, preceded by a l-byte count of point-
ers to variable data, and followed by
the pointers.

T T T T T
|CIAAAAlAAAA; P3Py P3Py | PaPoP,P, | Pp |
L_1 i i L i J

C = 1-byte count of pointers. (May be
zZero.)
A = 8 character message ID. This doub-

leword is actually addressed by word
2 of the parameter list.

Pyy Pyy...Pp = U-byte pointers to vari-
able data, if any.

Word 3 -- Pointer to a 2-byte field:
Byte 1 Condition
10° ECODAD or SYNAD condition
20" Clear Last Operation flag
Byte 2 Condition
‘OA° Called by one of the *OPEN’
modules - CICOA, CZICPZ, CZCOP
‘oct 5DST error in CZCOA
‘OE" Non-VAM data set in CZCOA

Modules Called:
VAM ABEND Interlock Release (CZCQQI) --
Release interlocks.

FREEMAIN (CZCGA3) ~- Free virtual storage.

FINDIJFCB (CZAEBl) -- Get JFCB address.

RELEXPG (CZCEN1) -- Release DSCB slot.

DELCAT (CZCFDl) ~- Delete catalog entry.

Search SDST (CZCQEl) -- Close SDST entry.

Interlock (CZCOH1) -- Set RESTBL lock.

Close Common (CZCLBC) -- Close data set.

Release Interlock (CZC0OI1l} -~ Release
RESTBL lock.

Disconnect (CZCGA8) -~ Disconnect from
shared virtual storage.

Prompt (CZATJ1l) -- Communicate with user
terminal.

Stow (CZCOK1l) -- Add or replace VP member.

XWTO {CZABCl) -- Communicate with the sys-
tem operator.

DUPCLOSE (CZCEZ1) ~-- Close duplexed data
set. '

CZAWA]l -- BULKIO ABEND recovery.

ABEND (CZACP1) -- Abnormal task
termination.

ABEND (CZACP3) -- Successful VDMEP
completion.

Section 1: Introduction 105

Operation: This text is keyed to the flow-
chart for CZCQK iChart JC} and a reference
by =3 will be lncluded for each area.
i ine wiil assembli® appropriate diaw
& to the user SYSOUT informing th

- iginal error which caused %he

JQMEF@ ne data set name of the
for which the error was detected,
action vaken on the data set.

standard link-
i1l immediately
% 18 & recursive

ntry at CITori: After
gerfo ‘med, a check w

will b places
xecursi@p han

routing

E h, piciks

& w;ﬁle“w% MESsSage
subroutine.

{”’”‘L.%.IO) the BULKIC
called o attos

Teanwy

For &
logoff oa
approprizie proces
QKB50O: .

Task ID o= 1, or pre—laqm;ygdbtx
ils, ABEND is reguirved, after
sing {(QEGR& - QK@G&S -

DCBID and DOCB Beader checks are made and
either a diagnostin or an information mes~
sage 15 inserted in the main message list
{QRO100 ~ QK0315).

For a

system data set, exit is via

QEB5C0. oOtherwise, the special processing
flag is oleared and exit iz wia the VDMEP

to ABEND, CLihkCPl. HNo
veturn o VIMED at CIC

entry point
ABEND will

-

For entry at CICQK3: ARBEND has completed
processing the VDMEP request. VDMEP must

now operate on the data set in exror. En~
sy oat CLCERK3 is from ABEWD wvia an entyy in
: Table.

Processing
shown from (QX3040

of unopened data sets is
- QR3700).

If this is the secondary copy of a dup~-
lexed data set, the primary copy is found
and closed (QK3041 QK3044) .

If a new data set was being created, the
DSCB slot and catalog entry are deleted
(QK305% - QK31003}.

106 Part II: Virtual Access Method (VAM)

Search SDST 1s called to close the entry
in the SDST, if the data set is not dup-
lexed and there are no DCBs open for the
data set by this task {(QK3200 - QK3210).

If thexe are no othey DCB headers, the
RESTBL pointey is cleared (QK3IZ20 -~ QK3IST0
- QK3700); but if other DCB headers exist,
the RESTBL is .iocked if necessary, and any
existing buffey, overflow and indexed
sequential directory pages are fres
RESTBL lock is released and the F
connected if pecessary. If thex
other users, t¢he RESTBIL pages arse
{QK3300 - QK3IBT0Y.

Diagnostic messages are output to SYSIOG
and if there zrz no nn DOBs, AREEWD is
called {QK9100 -~ QK95193.

ed data sets is shown
- QRQIGG)Q

Processing of open
in Chert JC {QK3%00

VAN ABEND Interiock Release
release interiocks, and if no 8
Nnecessary or =llowed, rﬁ? data
closed with i CLOSE ox DUw
the wessagesexit phase ri the g
%ﬁ%ﬁrﬁé {OK3908 - DQRUGSL - QK%%%;

- QR9IG0).

If a STOW is necessary, a STOW-% is done
on an old membey {(QK4050) and a STOW-N éan
On 4 new member - or on the old member
the STOW-R didn®it take IQK4100 - QEG35%0F,

conversational the user

If the task is
the member name {GE4250 -

is prompted for
QRU270E .,

if the useyr hnas had four PRMPTs ox
defaults or if the task is nonconversation-
al, a unique member name is created by
VDMEP and placed in a2 message te inform the
user of the name. This 8 character membey
name will consist of 4 alphabetic charac-
ters and 4 numeric characters; *ARAANNHNS.
Initiaily "NEHNR' = 0000; if a return code
from CZCOK (8TOW) indicates that this wmemb-
er name already exists, "HNNNG i¢ incre-
mented by 1 and the call to STOW issued
{OX8300 ~ QKL3I50).

¥hep the STOW-N is complete, the member
name 1is written in SYSLOG for a nonconver
sational task (RE4503, and both conve
tional and nonconversational tasks CLOSES
DUPCLCSE the data set and enter the
nessages/exit phase of the routine {QRUS0G -~
QK93 00},

There is a subroutine {(also used In-
line) which places the diagnostic/message
and its inserts in the message list (QKI05¢

QKI090).

Any messages for SYSOUT that can be
written (SYSQUT, SYSMLF are open -~ PROMPT
can be called) are passed via CZATI (QK9100

-~ QK9150), and then written in SYSLOG via
CZABQ (QK9200 - QK9250).

ABEND is called if required at CIACP1,
returned to normally if a previous call to
CZACP3 was made from VDMEP, or called at
CZACP3 if no previous call occurred (QK9500
~ QK9600).

For entry at CZICQK2: CZICQK2 is entered
from ABEND, when ABEND receives a recursive
call while processing a VDMEP request. The
'ABEND Required' switch is set and the
message/exit phase entered.

VAM INTERFACES

VAM effects the input/output of data by
interfacing with the paging supervisor.
External storage of a VAM data set is
limited to direct access devices, whose
records are in the page (4096 bytes) format
used with that device.

VAM data sets are organized by relative
page number. Each page of a data set is
assigned a page number which is relative to
the beginning of the data set.

These relative page numbers are trans-
lated to an input/output device address
through use of the relative external
storage correspondence table (RESTBL). The
content of the RESTBL is created from data
set extents obtained from data set control
blocks (DSCBs) and maintained within virtu-
al storage by VAM routines. External
device addresses supplied by the RESTBL are
passed to the paging supervisor, as
required, to build the external page
tables. In part, these are pointers to
external storage areas associated with the
active pages of a VAM data set.

One or more pages are required for the
RESTBL. If a partitioned organization data
set is opened, the partitioned organization
directory (POD) will reside in virtual
storage. For an index sequential data set,
directory page(s), plus possibly an over-
flow page, will exist in virtual storage in
addition to a one-page data buffer. With
VSAM, a buffer in virtual storage is pro-
vided which is large enough to contain the
largest record in the user®s data set, with
a maximum size of one segment (256 pages).

VAM is designed to minimize the number
of virtual storage pages associated with an
open data set. ©Only those data set pages
currently being operated on by the user's
program are addressable as virtual storage.

The virtual access methods routines
interface with other routines in TSS/360
including some in the command system, cata-
log services, and the resident supervisor.

These external routines are referenced in
the module descriptions of the access
methods routines.

MODULE ATTRIBUTES

All modules of the VAM have the follow-
ing attributes:

READ-ONLY The storage protecticn key
is set to prevent the user
from performing a store
operation on any part of
the CSECT.
REENTERABLE More than one task may
concurrently execute the
code embodied in the
CSECT.
PRIVILEGED The CSECT will be pro-
tected against any
reference by nonprivileged
routines: _the CSECT,
however, may reference any
part of VM.

PUBLIC Available to all tasks.

FIXED The size assigned will not
vary while in execution.
SYSTEM User reference to the
module is prohibited,
except through SYS sym-
bols. SYS symbols are
used to label entry points
to nonprivileged system
routines to which the user
may transfer control by a
standard CALL linkage.

LINKAGE CCNVENTIONS

!

Seven modules of VAM are considered
"fence sitters.” That is, they may be
called via type-1 linkage by either a pri-
vileged or a nonprivileged routine. Calls
from those modules to privileged modules
will be type-2 if it is necessary to "cross
the fence.®

The "fence sitters™ are:

GET CZCOR

PUT CZCOoS VSAM routines
SETL CZCOoT

PUTX CZCoU

GET CZCPA

puUT CZCPB VISAM routines
SETL CZCPC

The routines referenced by the above
modules may sometimes be called by type-2
linkage. In order to effect type-2 link-

Section 1: Introduction 107

age, V-cons and R-cons for the following
modules are stored in the enter table
{CHBET1). The code to access those mcdules
i85 also given.

e e o Bt T e e e e 3
] Name ! Entxy Point | ENTER Cocde |
oo e e oo 1
| MOVEPAGE | CZCOC1 |) & Tl |
[| | |
| INSPAGE | czcopl | X468]
! ! { |
| DELPAGE | CZCoD2 | A49* i
| ! | |
| PUT i CZT0E3 } X' 3E° [
i | | {
! FLUSHBUF | czcovi i £4D° i
i i ! |
i i CLCPIt] X*y7e i
! GETPAGE i CZCPIZ i X*4E" i
i H CZCPI3 i X'u4F* H
| I | |
| ADE i czcPLl | X'46° i
L. i - S SR 3

Cther VAM modules may be called by eith-
er privileged or nonprivileged routines put
are zlways executed in the privileged
state. Those modules are also listed in
the enter table:

{Wﬁ““;ame img;try Point gavﬁNTER Cod;“~§
ST e A PPr R
% STOH i CZCOK1 gg 45t §
g ESETL : CICPDL f "y f
§ READ/WRITE ? CZCPEL § 40" 1;
i RELEX i CZCPG1 1' 42 :
i DELREC L) szfm i‘ *y3° é

CONTROL BLOCKS

Lontxol block descriptions in this PLM
provide the following information to assist
in the understanding of the Virtual Access
Hethod.

s SYMBOL - The assembly mnemonic as it
appears in the assembly listing, DSECT
listing, or module descriptions in this
manual.

®* DATA - A code to indicate the format of
the information stored in a field. The
possible values are listed in Table 24.

108 Part II: Virtual Access Method (VAM)

Table 24. Abbreviations Used in Control
Bleck Descriptions

(oY ———— - -==1
| A | Address of an area-control block, |
{ | subroutine, etc. |
| | |
| B | Relative pyte position within an |
i | area. §
| []
{ € | EBCDIC data. |
| | |
} D | Relative doubleword within a i
| { control block. H
i | I
i L | Lock byte to bhe referenced by Test |
i { and Set (TS} instruction. See {
| | INTLX {C2COH) module description {
{ ! for more information. H
i] i
| N | Number -- count, limit, size, etc. |
| | |
{ R | R-con ~-- address of a PSECT. i
| I i
| V | V-con -- address of an entry point |
| { to a CSECT. i
| ! |
| W { Relative word position within a |
} { control block. i
! i i
{ ¥ | Code defined in hexadecimal, or a i
{ | greup of fields. i
G . 4

¢ DESCRIPTION - A brief description of
the contents and usage of a field. Foz
code fields, a list of possible vaues
is also given.

Control blocks and tables common to all
VAM access methods are described in this
section. Elements which are used only by a
single VAM access method (such as VISAM)
are presented with the discussion of the
appropriate routine.

Interruption Storage Area (ISA) -- (CHAISA)

The interruption storage area is locatecd
at virtual storage addresses 0 through
4095. Omne copy exists for each task. It
is used as a fixed communication region for
interruption processing between the task
and the task monitor, and between the task
and the resident supervisor (Table 25).

Task Data Defipnition Table (TDT) -~

{CHATDT)

The TDT specifies the data set name, and
supplies information about the external
storage of the data set. This control
block is generated prior to OPEN time by
either a DDEF command or a DDEF macro
instruction. It is updated at open time if
necessary (Table 26).

Table 25. Selected Fields of the Interrupt

Storage Area

|Symbol |Datal Description
_______ T et S
ISAVMP A |Virtual storage packing
joerigin
|
ISANAS N |Next available segment
{
ISATDT*} A |Task Data Definition Table
jorigin
|
ISASPN

jthe public segment
i

{

1

|

|

|

|

|

|

}

N |Shared Page Table number of |
|

. {
| Dynamic Loader Task i
|

|

i

!

|

i

|

]

|

[

|Dictionary
|
ISASDS*} A |Shared Data Set Table (5DST)
]
ISAVTH X |Authority code
] .
ISALCK#| L |Task Interruption Inhibit
{lock byte
]
ISACVP X |Cuxrrent VPSW
_______ Y SO U T |
j*Used directly by VAM. H
L e e e e e e e o o e e i

pata Control Block (DCB - CHADCB):
16 and Tables 27, 28, 34, and 35).

(Figure

The data control block, generated by a
DCB macro instruction, is used to maintain
information necessary for access method
routines to process a data set. It con-
tains data set organization, record format,
current page number, last operation, retri-
eval address of the current record, and
v-cons and R-cons of the access method rou-
tines (macro transfer list) to process the
data set or menber.

A DCB is generated at assembly time by
the DCB macro instruction. Subsequently,
both the programmer and the system may
enter information into the data control
block fields. The process of filling in
the DCB is completed at execution time.

sources of information for DCB fields
are, the DCB macro instruction in the
source program, the DDEF command Or macro
instruction in the job stream {or DDEF
macro instruction executed by the user pro-
gram), and the DSCB.

These sources are used in that order and
only fields not yet specified can be filled
from each source. For example, if a field
is specified in both the DDEF command or
macro instruction and the DSCB, only infor-
mation supplied by the DDEF command or
macro instruction is used for the DCB; the

Table 26. Selected Fields of a JFCB

[S B it i e t
|Symbol {[Datal Description

TDTDDN | C

| DDEF name (ddname)]

|Data Set name
TDTDS2 |

%
k

!

!]
{TDTDS1, | C
!

I

|TDTDSV | X

|

f

{pata Set Organization
| X'O4° VISAM

| X'05' VSAM

| X'06' VPAM

|

i
!
|

TDTDSR | C |(Absolute generation number 1
| | | i
{TDTDSM | C {Member name !
| | i t
|TDTOPN { N |Number of open DCBs i
{ { ! ;
{TDTVPY | X |Privilege flag; X'01° = s
| ! |privileged t
| | ! 1
|TDTAQL | X |Access Qualifier i
| | | X'00° unlimited]
{ | | X°01°* read/write §
| } | X°02' read only i
| 1] i
|TDTSHC | X |Sharing gualifier; X'01° =
| i {shared i
| 1 I !
{TDTDEB | A |Pointer to RESTBL i
| | | |
|TDTDCB | X |First 32 bytes of DCB i
| | | i
{TDTVF1 | X |[Volume flag {
| |] |
|TDTIDPL | C |[Volume serial number i
] | ! f
{TDTDSC | A |[Pointer to format E DSCB {
|] | i
|{TDTDUP | A |{Pointer to secondary JFCB of
{ { |a duplexed set i
| 1 I i
|TDTSD1 | A |Symbolic Device Allocation |
| | {table (SDAT pointer) i
| | |
|TDTID2 | X |2nd and 3rd volumes; same i
| 1 {format as for TDTVF1, i
{ i |TDTID1, and TDTSDI, above i
|] ! i
|TDTAPN | X {[Chain flag i

| | i
|TDTAPP { A |[Chain to JFCB appendage i
L L i 4

corresponding field in the DSCB is ignored.
The programmer can write routines that
modify any data control block field.

The DCB for VAM is composed of five
parts. The first part of the DCB is common
to all access methods. The four remaining
parts pertain to VAM only. Their relaticn~-
ship is shown in Fiqure 16.

Section 1: Introduction 109

(CHADCB)

DCB Common
Used by all access methods

T e

Transfer List for Macros

Common to all VAM Organizotion

32 Orgonizotion Independent
Working Storage

Extended Indexed

b e e

16 {xtended Sequentiol
Sequentiol Working
byres Working Storoge bytes
L Storoge L
Flgure i6. DCB Format for VAM

Relative External

Storage Correspondence

Table (RESTBL)

A control block used exclusively by VAM

is the relative external storage correspon-
dence table (RESTBL). B RESTBL is asso-
ciated with each open data set using the
virtual access method. It contains a list
of external pages assigned to the data set.
The RESTBL is used to convert page numbers
relative to the data set, to external
storage addresses. It also maintains con-
trol over data set page sharing. The
RESTBL 1s located in an area of virtual
storage protected from the user. The area
of virtual storage that contains the RESTBL
has a read-only protection key assigned.

In the case of a shareable data set, the
RESTBL pages arxre shared by user tasks, VAM
sharing rules are discussed in the section
on sharing.

A RESTBL is composed of four subsections
whose functions are described below. The
overall relationship is shown in Figure 17.

The RESTBL header contains control
information for using the RESTBL.

The second subsection,
s1s5ts of a series of externmal page entries
{EPE}, with the control block identifica-
tion CHAEPE.

{(Figure 18), con-

One entry exists for each page of the
data set, and contains the relative volume
number and relative external page number,
plus the page status, defined as in use,
not in use, or assigned but not yet
written.

110 Part II: Virtual Access Method (VAM}

|
! | !
!

| DCBPTV, | V,RIPUT routinex*

I
| |
|DCBPXV, | V,R}PUTX routine#

| DCBPXR |

Table 27. Selected Fields of the DCB
Copmmon

““““““ B S A et
{Symbel |Data] Description |
pmmm e R 1
|DCBDSO | X (Data Set Organization |
s [& |
! | | Macro |
{ | {Code Param Access Routines |
| DCBDV1| 1X*71* vis V1iSAM]
DCBDV2	{X*72* Vs VSAM
DCBDV3	[X°73° VIP VISAM & VPAM
DCBDVY4	JX*74° VSP VSAM & VPAM
DCBDV5S	{X*'75 VP VPAM & * i
	{ i
{	{*As determined by member
	{ organization
{	
DCBDDN	€ {DDEF name (ddname} i
I	i]
DCBSYV,	V,R{Synchronous Error exit
DCBSYR	faddress {SYNAD)
!	
{LCBEOV,	V,R{End of Data exit address i
immmml { (EODAD) i	
lDCBRFC	X {Record format }
DCBRCF	
DCBRCV	} X°'40°* Variable I
DCBRCU	{ X*C0° Undefined
i i	
DCBLRE	N
	!
{DCBKEY	N
i !	
DCBRKP	N j{Relative key position i
]]]	
{DCBLPA	N
	{ i
DCBEX1,	X
DCBEXZ2	
{	DCBOPI
	{
DCBID	C
i {] i	
{	DCBDEB
	i
DCELEN	N {Length of this DCB {in H
	{doublewords) i
DCBGTV,	V,R
DCBGTR	i
{	
]	
{	
i	
i	
]

|DCBSLR |

[S § W S
|*R-cons -~ Pointer to save areas on a
| dynamically allocated page

]

i

R}

|

| i
|DCBSLV, | V,R{SETX routines®

i

i
i
!
i
i

!
1
[

Table 28. Description of the Fields Com-
prising the VAM Organization

Independent Working Storage

o ————— D Bt Sttt 2!
|Symbol |Dataj Description |
e e TSR —— i
|DCBVMA | A |VMA of next record in buffer|
|]
|IDCBCPB | N |Current page and byte; i
| | |defined as follows: {
i | | !
{ DCBDEN] N |Current data page number |
I | | |
| DCBCBP| N |Byte position relative to |
{ | {current page |
| | | |
jDCBN { N |First page in request i
| ! { i
|DCBM { N |Number of requested pages |
| | |]
|[DCBOP | X |VAM General Services |
1 | |Operation: |
] | i
| DCBOPO| |X*8000°* Input, set Read |
i { {interlock |
! | [i
| DCBOF1| |X*4000' Loader request |
| |] |
| DCBOP2| {X?2000* Input, set Write i
| { interlock |
| | |
DCBOP3| {X*1000* Output i
| | I
DCBOPUY | {X'0800' Insert 1
| | i
DCBOPS| | X*'0u400" Delete |
| | [
DCBOPG6 | |X*0200° Release Read |
| |interlock |
| |
DCBOPT | |X'0100°* Release Write |
| | interlock]
| | |
DCBOPR&| | X" 0080" Replace blank pages |
| jon an insert |
| { !
DCBEY | N {Hash value of member name {6]
| jbits} |
| | 1
DCBNI | N |First page in request, |
i i {relative to data set - |
i i { compuated by VPAM routine |
| | |GETNUMBR (CZCOO)]
{ | | |
|IDCBSHC | ¢ |[Type of search request; see |
! i | SEARCH (CZCOL) |
{ i | !
| | |C*A* Alias name |
i] | |
| | |C*E* Either alias or member |
{ | | name |
! I { |
| | |C'M' Member name
| | | |
{DCBHD | A {DCB header in RESTBL |
[i A - - ———d

=
RESTBL Header
{CHARMD)
External
Poge Entries
HAEPE)
MOXVmUm (C E E(
size is
262,144
bytes
By Availoble Space L
T (ZERO bytes) T
DCB ond Member
Headers
(CHADHD & CHAMHD)
—— Y
Figure 17. RESTBL Fcrmat
et 4 byres -
Flag Reiotive Volume Number External Page Number
St g -
ot 2 - 14 e 16 }
Figure 18. RESTBL External Page Entry -

CHAEPE

For shared data sets, a 4-byte interlock
word in each EPE controls sharing of the
page. The interlock control word, and
method of updating it, is discussed in
detail in the sections on VAM sharing.

The third and fourth subsections of the
RESTBL,, designated as DCB and member head-
ers (CHADED and CHAMHD), are constructed at
open time. Address pointers in the DCB
header identify associated comtrol blocks:
pcy, JFCB, POD, RESTBL header. The DCB
header is linked to the RESTBL header or
the member header (if partitioned organiza-
tion) oy DHDLNK.

The DCB header link, and compatible
field design of the RESTBL and member head-
ers, make it possible to process members of
data sets identically.

A RESTBL is created for a data set by
the OPENVAM (CZCOA) routine, using informa-
tion extracted from the DSCPs of the
volumes where the data set resides. Each
volume contains all 3ata set control blocks
(DSCBs) for the data sets contained on that
volume. At open time, the external page
entries (EPE) are built from extents found
in the DSCB. As the data set is generated,
additional extents are obtained dynamically

section 1: Introduction 111

by REQPAGE (CZCOE). Once a shared data set
is open, noO new RESTBL is generated by any
subsequent OPEN, that is, only one RESTBL
ever exists at a time for a shared data
set. However, for each DCB opened for a
data set, one DCB header will exist in the
RESTBL. If this is a shared, nonparti-
tioned data set, each user®s DCB will have
a DCB header. Each of these headers, in
turn, is linked to the RESTBL header.

For a partitioned data set, the DCB
headers of each open DCB will be linked to
member headers.

The basic purpose of the RESTBL header
or member header is to document three items
of importance:

¢ ORGANIZATION - Sequential or Index
Sequential

® RECORD FORMAT - Fixed, Variable or
Undefined

¢ CONTENT - Starting page position in the
RESTBL, number of data, overflow, or
directory pages

The RESTBL header also accounts for
pages assigned to the data set, but not yet
in use, as well as available virtual
storage in the RESTBL.

Closing a DCB causes its DCB header to
pe deleted from the RESTBL. In a parti-
tioned data set, this also causes the memb-
er header to be deleted provided no other
DCBE headexrs exist for that member. The
RESTBL header and external page entries
will remain in virtual storage until the
last DCB is closed. At that time, the CLO-
SEVAM (CZCOB) routine will return the con-
tents of the RESTBL to the DSCBs associated
with the data set.

Descriptions of fields for the RESTBL
headexr (CHARHD) and for the DCB header
(CHADHD) are provided in Table 29 and Table
30, respectively.

Shared Data Set Table (SDST)

The SDST, whose address 1is given in the
interruption storage area (CHAISA) of each
task, consists of a header (CHASDS) and a
series of data set (CHASDE) and member
{CHASDMY entries. The SDST format is illu-
strated in Fiqure 19. Tables 31, 32, and
33 provide field descriptions of the SDST
header, a member entry and a data set en-
try. The data set entries are linked by
forward and backward chain pointers, with
the pointer to the first data set entry in
the SDST header. Member entries are
organized intc 64 hash chains. The hash
chain to which a member is linked is
generated from the member name. A table of

112 Part II: Virtual Access Method (vaMm)

64 words, part of the SDST header, gives
the address of the first member within each
hash chain. In addition to the data set
and member chains, two chains of deleted
entries are maintained in order to recover
space for building data set or member
entries. Deta set and member entries are
linked to the appropriate deleteu chain
when their user count reaches zero.

The information in the data set and
member entries is used to control access to
a data set, and alsoc to provide a common
location to store the information (shared
page table number and RESTBL address)
necessary for multiple tasks to obtain
access to an existing control block in
shared virtual storage. This controcl block
is updated by the VAM general services rou-
tine Search SDST (CZCQE) which has the fol-
lowing capabilities:

¢ Search the SDST for a specified data
set entry and/or member entry.

* Modify data set or member entries by
incrementing or decrementing the user
count. This capability also provides
for creating or deleting such entries.

The linkages between a user's DCB and
the RESTBL, POD, and JFCB for a member of a
partitioned data set, are shown in Figure
20. DHDLNK is shown as linked to either a
member header or the RESTBL header, since
this field, when the data set is non-
partitioned, will point to the RESTBL head-
er. If this data set were shareable, the
RESTBL and POD would be in shared virtual
storage.

SDST MAINTENANCE

The following routine maintains the
shared data set table (SDST).

Search SDST Routine (CZCQE)

The Search Shared Data Set Table routine
is called by OPENVAM (CZCOA), CLOSEVAM
{CZCOB), Find (CzZCO0J), Stow (CZCOK), and
the dynamic loader, to ada, update or
delete, data set or member entries in the
shared data set table (SDST), and establish
correspondence to shared virtual storage.
{See Chart JD.}

Entry Point: CZCQEl1l - Entered wvia type-1

linkage.

Input: Register 1 contains the address of
a four-word parameter list:

Woxrd 1 -- Address of JFCB.

Word 2 —-- Address of DCB.

Table 29.

+
|
|
|
|
1
RHDINW | L
|
RHDINR | N
|
RHDINN | N
| |
{REHDINI | L
] |
|REDNAP | W
| |
! |
|RHDNEP | N
| |
|RHEDFEP | W
i |
| RHDDIR |
| |
i i
| |
| |
{RHDDAT | N
| {
|RHDOVF | N
|
iRHDRPG | N
i |
|RHDTHD | W
| i
{ {
| |
i {
| |
| |
| {
|RHDFLG | X
| |
| |
i |
| |
1 |
i |
| |
| S, j I

|The first 4 bytes of the
|RESTBL form a VAM interlock
{word which is updated by
{INTLK (CZCOH) and RLINTLK

| (c2cOl)

|Write interlock
|Read interlock

{Count of read interlocks set
=Update interlock

}Next available External Page
|Entry {(EPE)

lCount of available EPE

|
|size {pages) of the Indexed
| Sequential Directory oOr
{Partitioned Organization
|Directory (POD)

|

|

|

|

] |
|First EPE of data set |
|

]

|

|

{Data set size (pages)

|

{Number of overflow pages
|

{RESTBL size (pages)

|
|
|
|
|
]
|
| |
{Last header built from |
javailable space. This |
{field, when decremented by |
|the size of the header to be|
{built (DCB=u48, member=32) |
jgives the address where a |
|new header may be built |
|
|
|
|
1
|
|
|
|
3

|[Data set organization:
X*80"
X'40*
Xr20"
X'08°
x'ou’
X'02*
x*01°*

Shared
partitioned
index Sequential
1SD Integrity
POD Integrity
DSCB Integrity
Recatalog Flag

e e

Field Descriptions for the RESTBL Header -- (CHARHD)

““““““ B Sentasinsias S e e e e T
|Symbol |[Dataj Description |
~~~~~ 4 fmm e e e — e m e
|RHDINI | L {Lock byte for the next 6 |
| | |fields |
| i | {
{RHDDCB | N |Number of DCBs that are OPEN|
| | { | |
| RHDODC | |First DCB header |
| | | |
|RHDADC | D |First deleted (available) |
| | |DCB header space |
| ] | |
|RHDOMC | D |First member header i
| | |
{RHDAMC | © {First deleted (available) |
| i {member header space |
| i | !
|{REHDPOD | A |POD 1
| | | |
{RHDTID | D |Task ID which set RESTBL |
{ | |interlock |
| | | |
|{REDVTA | A |[Address of the volume table |
i | | |
|RHDSPT | X |Pointer to the format E DSCB{
| | |
{RHDCPO | N |Data set cumulative pageout |
i i {count {
i ! 1 |
{RHDSAL | A |Secondary allocation (ESA)} |
| | |
{RHDRFM | X |Record format i
| | | |
|REDKYL | X |Key length |
i | | {
|REDPAD | X |VI pad factor |
| | 1 |
|RHDRKP | B |Relative key position i
| | | |
|{REDRCL | ¥ |Record length |
| | | |
|RHDDSO | X |DSORG i

i | |
|RHDCRD | X |Change/Referxrence pDate flags |

i | {
|RHDOPC | X |Option codes {
[ C— S G ———i

gSection 1: Introduction 113



Tablie 30. Field Descriptions for the DCB
Header -- (CHADHD) (Part 1 of 2)
o m—— T T T Y T T T T T T e S e e e e e 1
jSympbol |Data] Description
b o e _—
| DHODLO B A |DC8 associated with this
| |header
|
DHINTFC A |JFCB (TDT) for the data set
DHUTSK N iTask identification
|
DHDRES A |{RESTBL address
i
DHDPOD A |POD address
{
DHDLNK A |lankage to either the RESTBL
|header or to the member
|header if this 1is a
|partitioned data set and a
jmember is active (FIND has
| been done)
l
DHDCPN X |OPEN options - same as
| DCEOP1
|
DHDPRO X |Protection class of the
jvirtual storage in which the
{DCB resides
|
| X'03' Read only
| X'01' Read/Write
| X°'07* Private privileged
I
DHDINT X }(Interlock summary. This

| (CZCOH), RLINTLK (CZcOl),
jand VAMABIR (CZCQQ)

|

{The following reflect
{interlocks set in the
{indicated control blocks:

|

|X*0001' Data Set Entry in

| SDST

| X*0002°* RESTBL header
jX'0004"' Member descriptor in
| POD

[X*0008° PQD

|X*0010*' EPF that are checked
i out to this DCB
|X*0020' Member heaaer in

I RESTEL

|X*0040* SDST ccntrol entry
|X*0080' RESTBL header

| partial interlock

| set (RADINI)

|X*0100* SPT number in SDST

| Data Set Entry

] locked

!

T S S i T o S S S g N s SO (PN i S i S i, D s WA sy N T W s W G S St SN G, SN AT U e S i S L WO ot WIS i WS s s S s, Mo e Sk s e s el e

|Some of the above interlocks|
jindicate eitner a read or a |
jwrite interlock. The next 5|
mask values indicate which |
fof the control blocks are |
|write interlocked. i

—— —d e

!
|
I
!
|
|
|
|
|
1
i
i
!
|
]
|
!
!
|
!
|
|
i
!
|
|
|
]
|
i |field is updated by INTLK
!
!
}
|
!
i
i
|
|
}
i
I
|
|
!
!
|
|
i
i
|
]
]
!
i
|
|
|
|
|
|
i

114 Part II: Virtual Access Method (VAM)

Table 30. Field Descriptions for the DCB

Header -- (CHADHD) (Part 2 of 2)
T T T T T T T T T T T T e s ———— ]
|Symbol |Data] Description |
—— oo
| | [X*0200' SDST data set entry |
] | {|X*0400* RESTBL header |
{ { | X*0800* Member descriptor in|
] | | POD |
| i {X*1000° POD {
| | |X*2000* External Page |
| | | Entries I
| | | |
| | |The following 4 fields are |
| | Jused with VSAM organization: |
| [ i i
{DHDFBP | A |Buffer address {
| | ] i
|DHDNBP | N |Buffer size (pages) {
i ] ]
|DHDFDP | N |First data page checked out |
] | jto this DCB |
| | | !
|DHDPCO | N |Number of pages checked out |
| | jto this DCB |
| | | |
|DHDCOP | A joverflow buffer |
| | i i
{DHDISD | A |VISAM directory location |
] | ! |
|DHDCDP { N |Current data page |
1 | | |
|DHDNOP | N |Current overflow page i
| | ] !
{DHDMRL | N |[Maximum record length |
| | ] |
|DHDNDH, | W |Forward and reverse DCB {
| DHDPDH | |header pointers |
| | | ]
|DEDDUP | A jaddress of duplex copy of | |
| | {the RESTBL |
| | | |
|DHDDXP | A |Current External Page |
| | {Address |
| | | !
| DHDOXP |’ jOverflow External Page |
| | } Address |
i p— N i 4

Control Entry and Hash Toble
(CHASDS)
1 Segment
Moximum
] Dato Set and Member Entries _
T (CHASDE, CHASDM) }'

Figure 19. Shared Data Set Table (SDST)

Format



Table 31.

Field Description of the SDST Table 32. Field Description of a Member
Header -- (CHASDS) Entry -- (CHASDM)
Sttt S 1 et S Gt Sl et 1
{Symbol|Datal Description | |Symbol{Datal] Description !
b oo m s oo e i e T 4
| SDSINT| L |SLST interlock byte. If set,| | SDMCHN| A |Next member e€ntry in this !
i | jaccess 1s not permitted | | | |hatih alias clialn i
| i | | I ! | !
| SDSLPN| N |Last page number assigned to | JSDMNUR] N [ Number of users in this t
| | |the SDST | i { | member i
x l | _ I | | a
|SDSSPT| N |Llast assigned Shared Page | {SDMSPT| N |Shared Page Table (SPT) |
| | |Table {(SPT) number | | | |number assianed to this
| | f | | | memner |
{SDSAVA} A |Next byte of available space | i { | {
| | |in the SDST i |SDMNSP|{ N |Number of shared pages {
{ | | i | | {
{SDSDE { A |First deleted Data Set Entry | | SDMFSP| N | Number of the first shared |
! I | | | i | page i
{SDSDME| A |First deleted member entry | | \ | i
| | | ‘ | |SDMLSD| A |Data Set kntry corresponding |
{SDSSDE| A |First Data Set Entry { | ] |to this member |
| i | | | | |
{SDSHAS| A |First memper entry for each | | SDMNAM| C |Member namne |
i i jof the possible 64 hash | S W SRS et 4
| i values of member names |
| i |
| SDSPLK| L jvMA lock on SDSPSN |
| | | |
{SDSPSM| {4 |Public segment numpers i
[ W e e e e e e e e e 4
ISA SDST
(CHAISA) (CHASDS)
iDATDT (CHASDM)
ISASDS
(CHASDE)
[ SDESPT,
|_ SDEFSP
RESTBL DCB
\ (CHARHD! X
(C HAEPE) {C HADCB)
i (C HAMHD) l DCBDEB
i
& DHDLNK pHoOCE ! B
DHDRES  (CHADHD) DCBHD
- DHDIFC DHDPOD DCBSC 3
. i
Bk & POD i
(CHATOT) (CHAPOD) %
JFCB, (C HAPOE) 2
(TDTODNY i }
TOTDEB (CHAPOMY,
JFCB, (C HAPOMY,
L JFCEB (CHAPOMI,
Figure 20. Linkage Relationships Among Control Blocks Used with VAM
Section 1: Introduction 115



Table 33. Field Description of a Data Set
Entry -- (CHASDE)

g P T T e e e e e 1

| | | |

\Symbol;Data] Description |

+
|Next data set entry

|SDECHN! A |
| i | ]
i i |The next 4 bytes form a VAM |
i H |interlock word which is |
| i |updated by INTLK (CZCCH), andj|
! ! {RLINTLK (CZCOI) |
| ] | |
ISDEINW} L |Write interlock i
| i | i
|SDEINR} L |Read interlock |
f | | !
|SDEINN] N |Count of read interlocks set |
| i i !
{SDEINI| L |Update interlock i
! | | [
|SDENUR| N |Number of users {
| | | |
{SDESPT| N |SPT number i
{ | | f
|SDENSP} N |Number of shared pages {
! ] | |
|jSDEFSP] N |Number of the first shared I
i i gpage entry i
|

|SDENAM| C |Data S=2t name i
[T S S |
Word 3 -- Address of 8-byte member name,

zero if no member.
Word 4 -~ Address of l-byte type code:
C - close
O - open
J - user count only
Modules Called:

Interlock {CZCOOH1) =-- Set write (W) inter-
lock on a shared data set entry (SDSE).

Release Interlock (CZCOI1) ~- Release write
(W) interlock on an SDSE.

ABEND (CZACP) -- Abnormal termination of
task.

Exits:

Normal =-- For Open option:
‘00" Entry existed.
‘08" New entry built.
'10* Data set does not exist.

For Close option:

*00' Entry closed, users still exist.

116 Part II: Virtual Access Method (VAM)

‘04 Entry closed, no more users.
*10* Data set does not exast.
Error -- ABEND 1. called when one ot the

following conditions exist:
e No pointer to the DOR.

e SDST or shared page table already
locked by this task.

e The data set is non-VAM.

e Current pcinter is higher than the
"last page™ pointer.

e There is insufficient space for the
member entry or data set entry.

e An attempt is made to close an unknown
member or an unknown data set.

e An attempt is made to access a non-
shared data set by two different
tasks.

Operation: Overall operation of this
module consisits of entry linkage, data set
name search, member name search, analysis
of user requirements, updating of data set
entries and member entries, and either a
normal return, an error return, ©Or an
ABEND.

After completion of linkage and loading
base registers from the parameter list,
this module checks that the DCB code is
present in the field DCBID. If unequal,
ABEND is invoked.

By use of test and set (TS) and time
slice end (TSEND), execution of this task
will be delayed until the SDST interlock
byte is found in the reset state. At that
time, this task has exclusive control of
the SDST, and a search through the chain of
data set entries is made beginning with the
SDSE specified in SDSDSE, by comparing the
44 byte data set name in the JFCB with the
data set name in each SDSE in the chain.

If the end of the SDSE chain is reached
before a matching data set name is found,
or if no chain exists, an SDSE for that
data set name does not exist--subsequent
action depends on the option requested by
the calling routine in the parameter list.
When a matching name is found, this task
will delay execution until the shared page
table number (SDESPT) is not equal to
X*FFFF®* (SPT lock condition). If the lock
condition is present, and this module was
not called by ABEND for release of inter-
locks, the portion of the SDSE search for
the specified data set name which follows
interlocking the SDST, will be repeated.
Then if a member name was specified in the



list of input parameters, a search for that
member name entry will be performed.

The 8 byte member name is hashed to 6
bits using the logical operation "exclusive
or®”. That hash value is used to pick one
of the 64 member entry chains, and the
selected chain is searched for the speci-
tied member name. Each member name entry
in the selected chain is compared against
the member name specified in the parameter
list. 1f equal, the data set name in the
SDSE addressed by the member entry is com-
pared. If both are equal, the proper memb-
er entry has been found and will be pro-
cessed by this routine. If no member entry
chain exists or no matching member name 1is
found or matching member names do not point
pack to the SDSE previously found, then no
member entry exists. Continued processing
depends on options specified in the para-
meter list.

The following describes processing fol-
lowing data set and member name searches.

If the SDSE was not present, and a memb-
er name was specified, an error return is
made. If a member name was not specified,
and the option was CLOSE, an error return
is made. Otherwise, a new SDSE is built,
whether from the chain of deleted SDSEs or
from available storage, and linked to the
active SDSE chain with the user count set
to one. Insufficient storage will cause
ABEND. For VSAM or VISAM organization,
Interlock (CZCOH1) is called to impose a
write interlock on the SDSE if the OPEN
option is non-Input. A return is then made
to the user with a normal completion code
and the address of the found SDSE in gener-
al register 1.

If the SDSE was present and a member
name was not specified, the organization
and operation will be checked prior to
updating the SDSE. If this is not a VAM
organization, ABEND occurs. If this is
either a VSAM or VIsaM datae set (but not
VPAM) to be opened, for OUTPUT, OUTIN, or
UPDATE, the presence of an SDSE indicates
that this data set has at least one user
and is therefore not available to this
task. If a VSAM or VISAM data set is to be
opened for INPUT and a write interlock
exists, the data set is not available. For

either of these two cases, the interlock on
the SDST will be released, and TSEND will
be used to delay processing of this task
until the other tasks have ceased to pro-
cess that data set. Each time the task 1is
reinitialized, the procedure to search for
the SDSE will be started at the point
{described above) where an interlock on the
SDET is established by use of a TS.

Where a VSAM or a VISAM data set is to
be opened for input and a write interlock
does not presently exist, Interlock is
called to impose a write interlock on the
SDSE if the open option is other than
INPUT. It is not necessary to impose a
read interlock, since the presence of an
SDST entry without a write interlock
implies a read interlock condition. The
last operations to be performed are, to
increment the user count in the SDSE, place
the normal return code in register 15, the
address of the SDSE in register 1 and
return to the calling routine. This is
done for VSAM or VISAM opened for input,
and for any VPAM open.

When the specified operation is CLOSE
and no SDSE exists, the interlock on the
SDST is released, and an error return is
made to the calling program.

When the specified operation is CLOSE
and the SDSE was found and a member name
was specified, the count of users will be
reduced. If this count reached zero, the
member entry will be deleted from the memb-
er chain and its space appended to the
deleted member chain. A return will be
made tc the user with a normal completion
code.

When the operation is CLOSE, the SDSE
was found and no member name was specified;
if the data set organization is VSAM or
VISAM, Release Interlock is called to
release the interlock that had been set on
the data set-R read or write according to
the OPEN option in the DCB. Following
that, the user count in the SDSE is reduced
by 1. If the count reaches zero, that SDSE
is deleted from the chain of active SDSEs,
and its space appended to the chain of
deleted SDSE. A normal return is then made
to the user.

Section 1: Introduction 117



All direct access devices (2311 or
2314), on which VAM data sets reside, are
initialized and maintained in a standard
format. All space on these volumes, with
the exception of cylinder 0, track ), and
possibly cylinder 0, track 1, is tr=ated in
units of 4096 bytes (one page). Associated
wlith each volume 1s a page assignment table
{PAT) which contains entries for all of the
pages on the volume. The length of the PAT
depends on the type of device and currently
occupies one page on the 2311 volume, and
two pages on the 2314 volume. This table
15 pointed to by a field in the volume
label.

Each entry in the PAT is 1 byte long.
1f the first hit of the entry is zero, the
page represented by the entry is either
available for assignment to a data set or
15 already assigned. The remaining 7 bits
provide a binary count of the number of
data sets sharing the page. When this
count is zero, the page is available for
assignment.

If the first bit of the entry is 1, the
page it represents is either a DSCB page or
an error page. If the second bit of such
an entry is 0, the entry represents a DSCB
page, that is, the page contains data set
contxrol blocks (DSCBs). Each DSCB page can
contain up to 16 DSCBs and is, accordingly,
divided into slots. When only 4 of these
slots remain available on a page, one of
two flag bits is set to one. This indi-
cates that the page is only to be used for
DSCBs which further describe data sets
a2lready included in that DSCB page. The
second of these flags is set to 1 when all
16 slots on the page are in use. The func-
tion and format of the DSCBs will be dis-
cussed further below.

The third type of entry which can be
found in the PAT is the error page entry.
This entry represents a page which is
unsuitable for use due to surface errors
discovered by the RESTORE utility and is
indicated by a 1 in bits 0 and 1. Follow-
ing the page entries 1n the PAT, there are
Several unused bytes of space. The last 97
words of this space are used for relocation
entries. The last word in the table is a
relocation contrcl entry, which maintains a
half-word count of the number of relocation
entries which precede it, and a half word
(X*FFFF') if there are any entries. The
other 96 words may be occupied by reloca-
tion entries. These entries contain the
relative page number of the error page, and

118 Part II: Virtual Access Method (VAM)

the relative pay® number of the xr¢location
page.

THE DATA SET CONTROL BLOCK (DSCB)

Associatec with each data set :s one or
more DSCBs. The first of these cintrol
blocks is called¢ a format-E DSCB; if addi-
tional space is required to descr:be the
data set, format-F DSCBs are built and
chained to the format~E DSCB. A data set
and the DNSCBs which describe it may be on
more than one volume. Because of this, the
chaining procedure used gives the relative
volume number and the relative parce number
on that volume where the next DSCR is
located. Also, since each DSCB page con-
tains up to 1é& DSCBs, the slot number of
the DSCB is included. Each format-E DSCB
contains the data set name and properties
and possibly the external page entries
which give the location of the data set
pages on external storage. Thess entries
contain the relative volume and relative
page number on the volume where the data
set page is located.

The concept of relative volume numbers,
introduced above, arises from the possibi-
lity of a data set occupying more than one
volume. For public data sets, this rela-
tive volume number provides an indexing
factor into the public volume table. This
table consists of a 16 byte header, which
contains a count of the maximum number of
public volumes allowed, and the count of
public volumes actually in use. Following
the header is a series of 16 byte entries
representing each volume assigned to public
storage. The entry contains the volume ID,
the device code, and the symbolic device
address of the volume. This information,
in conjunction with the pathfinding tables
and the pathfinding routine of the resident
supervisor, make it possible to locate all
volumes which contain a given data set.

The public volume table is a separately
assembled CSECT which is a part of initial
virtual storage and is 1initialized by Star-
tup. 1In order to maintain similarity in
the processing of public and private data
sets, a table, called the private volume
table, is built for private volumes. The
address of the volume table is placed in
the RESTBL header by OPENVAM.

The content of the DSCBs for a data set
also vary acccrding to whether the data set
is public or private. Within the field of
data set properties is a count of the numb-



er of volumes which the data set occupies.
For public data sets this count is zero
since the list of volumes is contained in
the public volume table. In this case, the
data set name and properties field is fol-
lowed immediately by a list of external
page entries. Lach of these entries con-
5ists of a relative volume number which
provides an index into the public volume
table and a relative external page number,
which provides an index into the page assi-
gnment table on that volume. For private
data sets residing on one volume, this
field is also zero since the volume ID is
contained in the data set descriptor. For
multivolume private data sets, the data set
name and properties field is followed by a
1ist of the volume IDs on which the data
set resides. This list is used by MOUNTVOL
when it builds the private volume table.
The format-E DSCB may contain up to 25
volume IDs each 6 bytes long. Following
the list of volume IDs, is the list of
external page entries which are the same as
for public data sets.

BUILDING AND MAINTAINING A DATA SET

When a user is building or updating a
Gata set, he conceives of it as being a
group of contiguous pages of records.
Actually, because of the virtual storage
concept, the pages of any data set may be
physically located in several external
areas known as extents. In order to allow
the user to continue to think of the data
set in terms of contiguous pages, it is
necessary to construct a relative page/
external page correspondence table
{RESTBL). This table is built by OPENVAM
when a data set is first opened for use.
The RESTBL consists of a header which con-
tains information such as the number of
pages available for assignment to the task,
the number of pages currently in use by the
task, and the relative location of the
first unused page which can be assigned to
the task. The balance of the RESTBL con-
sists of a series of external page entries
which are identical in format to the
external page entries in the DSCB described
above. This parallel construction of
external page entries enables the system to
assign and delete pages in a data set, and
to update the availability of the pages on
the volume, without the use of conversion
routines.

The external pages assigned to a task
are also placed in the user's external page
table or shared page table so that a
reference to a virtual storage address is
translated to the correct main storage
adaress during execution.

puring execution, a data set may be
aynamically increased or diminished in size

Section 2:

or deleted completely. When this occurs,
the affected pages must be added to or
deleted from the data set and the task's
RESTBL. For this purpose, sSix service rou-
tines are provided with the wvirtual access
method:

Insert/Delete Page (CZCOL} -- Effects the
addition or deletion of pages in a data
set and performs error checks to deter-
mine the validity of the operation.

Insert (CZCOF) -- Adds external page
entries representing the new pages to
the task's RESTBL.

Request Page (CZCOE) ~- Provides Insert
with & list of available pages for ins-
ertion into the RESTBL. It also marks
the pages in use and unavailable for
assignment.

Expand RESTBL (CZCQI} -- Increases the size
of the RESTBL for nonshared data sets
when the addition of new page entries
causes an overflow condition.

Reclaim {CZCOG) -- Deletes page entries
from a task's RESTBL and adds them to
the available list for future assignment
or release at the time the data set is
closed.

DELVAM (CZCFT) -- Deletes a virtual organi-
zation data set by deleting its catalog
entry and freeing the external pages and
DSCB slots which it occupies.

Insert/Delete Page Routine (CZCOD)

The Insert/Delete Page routine is called
by FLUSHBUF (CZCOV) , GETPAGE (CZCPI), and
Add Directory Entry (CZCPL) to check and
perform insertion or deletion of pages
within 52 data set. The validity of the
request is checked, based on the specific
request and on parameters in the DCE and
RESTBL. {See Chart KA.}

Entry Points:
CZCOD1 ~-- Insert pages, entered via type-1
or type-2 linkage.

CZCOD2 -- Delete pages,
or type-2 linkage.

entered via type-1

Input: Register 1 contains the address of
the DCB. Two fields which must be set in

the DCB are:

DCBN -~ Page number, relative to the data
set or member, at which the operation is
to take place.

DCBM -- Number of pages to be inserted or
deleteaq.

VAM Volume Format and Data Set Maintenance 119




Modules Called:

Insert (CZCOF1) -- Insert additional pages
at a specified position within a data
set and move all other active pages
upward.

Reclaim (CZCOG1) -- Delete specified pages.
Interlock (CZCOH1) -- Set a write interlock
in the RESTBL external page entry.

Release Interlock (CZCOiIl) -- Release write
information on RESTEL.

GCETNUMBR (CZC0O01) -- Validate and perform
insertion or deletion on a partitioned
data set.

TSEND {(CEAH19) -- Force end of time slice
for this task, to wait for interlocks in
shared pages to be released by the task
that had set them.

YDMEP (CZCQK1) ~- Output a diagnostic mes-
sage and terminate the function (but not
the task).

Exits:
Normal -- Return to the calling routine
with one of the following return codes:

*00' Normal.

*04* No storage space available.

*08* Storage ration exceeded.

*0CY  No secondary storage allocation
specified.

*10* Shared data set RESTBL cannot be
expanded.

*iu4* Maximum data set/or member size
exceeded.

*18* Insertion beyond end of data set.

*1C* Deletion beyond end of data set.

Error -- VDMEP is called and the function

(not the task) terminated if an invalid
return code is received from Reclaim,
Insert, or GETNUMBR.

Operation: Calls to CZCOD are for the log-
ical insertion or deletion of data pages
within a data set. If the routine is
entered at the primary entry point
(CZCoDl), the Insert flag in the DCB opera-
tion field (DCBOP) is set to insert
(DCBOP4}. If entry is made at the secon-
dary entry point (CZCOD2) in the case of a
deletion, no indication is set at this
time. The code from these two types of
entries converges to perform module
initialization.

120 Part II: Virtual Access Method (VAM)

Initialization and general register
storage is executed in conformance with
linkage conventions. Base registers are
declared for the calling program's save
area. CZCOD CSECT and PSECT, DCB, DCB
header and RESTBL.

Insertions cr deletions may not be done
on data sets which are opened tor input
only. If the DCB open option indicates
input, ABEND is called immediately. The
RESTBL is interlocked for shared data sets.

If the data set is partitioned, GETNUMB-
ER (CZCOO) must be called. The requested
operation is tested. If the Insert flag is
not set as descrbied in the entry proce-
dure, the Delete flag (DCBOPS) is set and
GETNUMBR called. Upon a successful return
from GETNUMBR, control is returned to the
user by the RETURN macro, since GETNUMBR
has already accomplished the desired inser-
tion or deletion.

For nonpartitioned data sets, CZCOD per-
forms a great deal of the consistency and
validity check required for the insertion
or deletion.

The extent of a deletion, that is, the
first page plus the number of pages being
deleted, must be contained within the data
set. If any of the pages to be deleted
falls outside of the range of the data set,
ABEND is called.

Reclaim (CZCOG) is called to accomplish
the deletion. The return code from Reclaim
is tested for errors. If general errors
exist or the deletion was requested on
pages of a shared data set that were inter-
locked, an appropriate return code is set
and control returned to the caller. Upon
successful deletion, control is returned to
the caller by the RETURN macro. If the
data set is shared, the RESTBL interlock is
released before returning.

An insertion must be made within the
range of the data set or contiguous to the
last page. If the insertion is requested
outside or not adjacent to the data set, an
appropriate return code is set and control
returned to the caller. The actual inser-
tion of the data page is performed by
Insert (CZCOF). The return code from
Insert is tested for errors. If they
exist, VDMEP is called. Control is
returned to the caller by the RETURN macro.
For shared data sets the RESTBL interlock
is released before returning.

Insert Routine (CZCOF)

Insert is called by Insert Page (CZCOD),
Extend POD (CZCOM), and GETNUMBR (CZCOO) to
insert additional "in use® pages in the



RESTBL of the data set involved in the

request. (See Chart KB.)

Attributes: Read-only, reentrant,
privileged.

Entry Point: CZCOF1 -- Entered via type-1
linkage.

input: Register 1 contains the address of

the DCB. Fields used in the DCB are:
DCBN -- First page of data set involved in
request (nonpartitioned).

DCBNI -~ First page of data set involved in
request (partitioned).

DCBM -- Number of pages involved in
request.

DCBOP -- Type of operation requested.

Modules Called:

Request Page (CZCOE1l) -- Flags additional
external page entries "in use" in the
available page chain in the RESTBL.
Request Page will also attempt to
increase the number of pages available
to the task, by calling FINDEXPG, when a
sufficient number of pages is not avail-
able to fill the request.

VDMEP (CZCQK1) -- Output a diagnostic mes-
sage and terminate the function (but not
the task).

Exits:
Normal -- Return to the calling routine.
Error -- A valid error code returned from

REQPAGE is passed back to the calling
routine in register 15. An invalid
error code returned from REQPAGE results
in VDMEP being called.

Operation: When Insert is first entered,
registers are saved and base registers
established for the CSECT, PSECT, DCB, DCB
header, and RESTBL header. Insert then
retrieves the number of the first page to
be inserted and the total number of pages
to be inserted from the DCBR. Next, the
virtual storage addresses of the next
available page and of the location of the
insertion are computed, and a call is made
to Request Page (CZCOE). Reguest Page will
flag the requested number of pages "in use"™
by setting the flag in the external page
entries in the RESTBL. If a sufficient
number of pages are not available to fill
the request, an attempt is made to add
pages to the available list from external
storage. If Request Page is unable to fill
the request, an error return is made to the
calling routine by the RETURN macro
instruction.

Section 2:

Insert may be called to insert pages
between existing pages of the data set or
to simply add pages to the end of the data
set. 1In the latter case, Request Page will
have added the new pages at the end of the
list of "in use” pages and no additional
work is required of Insert. If pages are
being added between existing pages, it is
necessary to create a gap in the list of
"in use”™ pages in the RESTEL. For this
purpose, a 64-word work area is provided in
the PSECT. This area will hold 32 shared
or 64 nonshared external page entries. The
new entries are moved into this work area
starting from the beginning of the avail-
able list. All current "in use" entries
following the point of insertion are moved
back in the RESTBL an equal number of words
to create a gap. The new page entries are
then moved from the work area to the gap
thus created. This procedure is repeated
until all new entries have been inserted.

In the case of duplexed data sets, this
process 1is repeated for the secondary copy,
after which the DSCB integrity bit is set
and a normal return is made to the calling
routine . The setting of the integrity bit
will cause CLOSEVAM to call Write DSCB to
update DSCBs on the volumes. In this mann-
er, pages dynamically added to the data set
are made unavailable for future allocation.

Note that this routine does not inter-
lock the RESTBL for shared data sets. This
is so because Insert assumes that the cal-
ling routine had done so before calling it.
Also, Request Page is responsible for
updating the counts of external pages in
use, available pages, and the relative
location of the first available page.

Expand RESTBL Routine (CZCQI)

Expand Relative External Storage Corres-
pondence Table is called by OPENVAM
(CZCOA) , MOVEPAGE (CZICOC), Request Page
(CZCOE), and Find (CZICOJ) to increase the
size of the RESTBL by one page. The addi-
tional space appears between the external
page entry words, and the DCB and member
header control blocks. Note that a RESTBL
which resides in shared virtual storage
cannot be expanded. (See Chart KC.)

Attributes:
privileged.

Read-only, reenterable,

Entry Point: CZCQI1 -- Via type-1 linkage.
Input: Register 1 contains the address of
the RESTBL to be expanded.

Modules Called: VMA (CZCGH) -- To increase
the size of a specified virtual storage
area.

VAM Volume Format and Data Set Maintenance 121



Exits:

Normal -- Execution of the calling program
is resumed bv use of RETURN. No special
recurn code is given.

kxror -- None.
Operation: Initialization and general

register storage is executed in conformance
with linkage convention. Base registers
zre declared for the CSECT and PSECT, &
save area, RESTBL, DCB header and JFCB.

Expand RESTBL calls Expand {(CZCGA4J Dy
+he CALL macro to expand the virtual
storage of the RESTBL by 1 page. After the
expansion, the RESTBL pointers, are updated
in the JFCB if the RESTBL was relocated in
the expansion. RESTBL pointers (VM
addresses) within the DCB and member head-
ers are updated if the RESTBL has been
relocaited.

The DCB and member headers are moved on
to the new page up to the top header; this
creates space between the external page
entries and headers, for the insertion of
new information. The relative pointers
within the headers, and the DCB and member
headers are updated by 4096 to reflect
their new position.

When the new virtual memory space has
been obtained, and all pointers and
addresses which need to be adjusted have
been updated, Expand RESTBL returns to the
calliing module by the RETURN macro.

Note that a RESTBL which resides in
shared virtual storage cannot be expanded.

Reguest Page Routine (CZCOE)

Reguest External Pages is called by
Insert {(CZCOD) and OPENVAM (CZCOA) for the
purpose of assigning available external
pages to a data set. If sufficient pages
are not available to £11l1 the request, an
attempt is made to increase the size of the
aata set by calling FINDEXPG (CZCEL). The
newly assigned pages are added to the
task's RESTBL or, in the case of a shared
data set, to the shared RESTBL. If this
addition results in an overflow of the
RESTBL, it is expanded to accommodate the
extra pages in the case of nonshared data
sets. Since a shared RESTBL cannot be
expanded, this condition results in a call
to VDMEP {CZCQK1). (See Chart KD.)

Attributes: Read-only, reentrant,
privileged.

Entry Point: C2COEl -- Entered via type-il
linkage.

Input: Register 1 contains the address of

the DCB. Fields used in the DCB are:

127? ©Part II: Virtual Access Method (VAM)

DCBM -- Number of pages requested.

DCBN -~ Relative number of the first page
affected.

Modules Called:

Expand RESTBL {CZICQI1} -- Increases the
size of tne RISTBL for a nonshared data
set when the jnclusion of the newly
assigned pages causes overflow of the
current REGSTBL.

FINDEXPG (CZCEL1) -- Assigns additional
external pages to the task from the
storage allocated to the task.

VDMEP (CZCQK1} -~ Output a diagnostic mes-
sage and terminate the function (but not
the task).

Exits:

Normal -- RETURW to the calling routine if
successful or if the request is for zero
pages with one of the following return
codes in register 15:

*00°' Normal.
*O04* No external storage available.
*08' Storage ration exceeded.
‘0C*' No secondary storage allocation.
*10*' Shared data set RESTBL cannot be
expanded.

Error -- VDMEP is called if an invalid
return code is received from FINDEXPG
(CZCEL1).

Operation: Initialization and general
register storage is performed in confor-
mance with standard linkage conventions and
base registers are established for the
CSECT, PSﬁCT, pCB, DCB header, and the
RESTBL. The number of pages involved in
the request (DCBM) is checked and, if the
request is for no pages, a normal return is
made to the user.

The function of Request Page is to
assign external pages to a task’'s data set
from external storage which has been pre-
viously allocated. These pages may be
assigned from either the primary or the
secondary allocation if it ie be assigned
from either the primary or the secondary
alocation if it exists. Additionally, the
page entries in the RESTBL are flagged "in
use® and any pages which have been assigned
are added to the RESTBL.

These operations differ in two ways for
shared or nonshared data sets. In the case
of shared data sets, two words of RESTBL
space are required for each page entry: the
additional word is occupied by the page



interlock required for shared data sets.
The other difference is that the RESTBL
cannot be expanded for shared data sets.

Following the initialization process,
the data set is examined to determine if it
15 shared. With the exception cf the above
noted differences, the processing is the
same; the exceptinsni will also be mentionecd
in the following description. In each case
the RESTBL is tested (RHDNEP) to determine
1f suftficient pages are already assigned.
If they are, the pages are flagged "in use"”
in the RESTBL external page entries, and
the count of available pages (REDNEP) ani
the locataon of the next available page
(RHDNAP) are updated in the ~ESTBL. A test
is made to determine if this is a duplexed
gata set and if the secondary RESTBL must
st1ll be processed. 1f both are true,
REQUEST PAGE loops back to the point of the
test for "no pages requested", above, and
repeats the procedure. If the data set is
not duplexed or if the secondary copy has
peen processed, a normal return is made to
the caller.

If Request Page finds that there are not
sufficient pages assigned, it attempts to
assign sufficient pages from the secondary
space allocation (the user may have
requested up to 256 pages). If no such
allocation was made, a call is made to
ABEND. If such allocation was made, the
RESTBL is examined to see if there is
enough available space in the RESTBL to
hold the new external page entries. This
Space exists in the RESTBL between the
existing entries and the headers which are
at the end of the RESTBL. If the RESTBL
does not contain enough space and the data
set is shared, a return is made to the
caller with an error return code. If the
data set is not shared, a call is made to
the Expand RESTBL routine to provide the
space required. Following this calil or if
the RESTBL contained sufficient free space,
a call is made to Find External Page
{(CZCEL). Find External Page will return
the addresses of 256 pages to be assigned,
or the remainder of the se2condary alloca-
tion if it is less than 256 pages. If the
data set is not shared, tais list is moved
directly to the RESTBL following the last
previous entry. If the data set is shared,
the entries are moved, one by one, from the
return area to the RESTBL, and each entry
i1s preceded by a full word of zeros which
serves as the interlock word for the page.
For both types of data set a switch is set
to indicate that the DSCB should be
updated, and the number of available pages
is updated in the RESTBL (RHDNEP). Request
Page then returns to check if enough pages
have been assigned. This procedure is
repveated until enough pages are made avail-
able to the task or until the secondary

Section 2:

space allocation is depleted. In the latt-
er case a call 1s made to ABEND.

When the request for pages is satisfied,
each page entry is flagged "in use™ and the
next avai.able page location (RHDNAP) is
adjusted. Finally, the checks tor duplexe:l
data set ¢nd secondary HESTPEL update are
repeated. If a secondary RESTBL must be
processed, control is returned to the point
of check tor no pages; otherwise, a return
is made to the caller with a normal return
code.

Reclaim Routine {(CZCOG)

Reciain 1s called by Delete Page
{CZCOD)Y, GETNUMER (CZCOU}, and Stow {(CZCOY)
to delete external page entries from the
"in use" list in the RESTBL and place them
in the available list. This has the effect
of removing the pages from the data set,
but the pages remain allocated to the task
and may be reassigned at some future time.
(See Chart KE.)

Attributes: Read-only, public, privileged.
Entry Point: CZCOGl -- Entered via type-1
linkage.

Input: Register 1 contains the address of
the DCB. Fields used in the DCB are:

DCBNI -- First page to be deleted (par-

tioned data set).

DCBN -- First page to pe deleted (nonparti-
tioned data set).

DCBM -- Number of pages to be deleted.

Module Called: ABEND (CZACP1l) -- Abnormail
task termination.

i

Exits:
Normal -- Return to the cailing routine.
Error -~ A return code of *0u4' 1is set in

register 15 if the request is to delete
shared pages which are interlocked.
ABEND is called if the data set organi-
zation 1is VPAM.

Operation: The operation of Reclaim is
essentially the same for shared and non-
shared data sets. In the case of duplexed
data sets, the process is repeated for the
secondary RESTBL in order to maintain sym-
metry between the copies.

The function of Reclaim is to mark the
deleted pages not in use and to add them to
the available list in the RESTBL. This is
accomplished by setting the proper flags in
the external page entries in the RESTBL,
and by moving the external pages entries
from the chain of "in use®™ entries to the

VAM Volume Format and Data Set Maintenance 123



chain of avalilabie entries. This creates a
Gap Lo the chain of all entries assgigned to
the task, 30 Reclaim moves the entries up
in the RESTHL to cliose the gap {see Figure
23). In addition, tie integrity L1t in the
DESTBL header 15 set. This causes CLOSEVAM
CCa) o call write DSCB which writes cut
entries from the RESTBL to the DSCEB on
ne volume. The effect is to make all
deleted pages which are not reassigned to
+rhe task, available for allccation tc some
othey task after the data set is closed.

A

Do s

n Reclaim is entered, registers are
in conformance with linkage conven-—
ng and pase registers are established
the CSECT, PSECT, DCB, DCB header, and
RESTBL headex. The number of pages to
ieted iz checked and, if zerc, control
turned to the user. If there are
tc be deleted, the address of the
external page entrv to be deleted is
together with the amount and
addyress of unused space in the RESTBL.

&t this point, the processing for shared
and nonshared data sets diverges. The dis-
tinction arises Zfrom the difference in the
size of the external page entries (8 bytes
shaved, & bytes for nonshared). The
sroecessing s logically identical for both
and the following description applies to
both.

k]

The amount of available space in the
RESTRL is compared to the amount of space
required to hcecld the deleted entries. If
the space is large enough, the deleted
entries are moved from the "in use"” chain
©o that area, the entries are flagged as
nct in use, and the entries following the
gap laft by the deletion are moved up to
ciose the gap.

if the amount of available space 1is not
large enough, a 6l-word work area in the
PSECT is used for intermediate storage of
ne entries. Up to 32 shared or 64 non-

RESTEL RESTBL RESTBL

j_Header _3 Header Header

h——:———-—- ! ! 1 1 'n use

! 2 i Inuse 5 2 J Poges

i ( Peoes T

™ 7z )

; 4 :; % J 6 5 Availoble
5 \‘ Availoble 5 3 Pages
: 7/ Pages

i & ) & 4

77 Y ¥

S 3 / 3

’:/;//,/ ‘Avoilcble 4 % Available

// j Space Space

. /Q% A%sz J

Headers Headers Headers

Deleting Pages from the "In
Use" List in RESTBL

Figure 21.

124 Part II: Virtual Access Method (VAM)

shaved entries are moved from the "in use”
chain to the work area, and are flagged
not in use, The gap left by this dele-
tion 15 cloused and the deleted entries

are added o the end c¢f the chain of
avallable entries. This process 1s re-
peated until all deletion entries have
been processed.

Following the movement and flagging of
entries, the data set is checked to see if
it is duplexed and if the secondary RESTBL
remains to be processad. If both condi-
tions are met, the entire process is
repeated for the secondary RESTBL. When
ail entries for all copies cof the data set
have been handled, the DSCB integrity bit
{RHDFLG) in the RESTBL header 1is set, to
cause the updating of the DSCBs on the
volume or volumes, and control is returned
to the caller.

DELVAM Routine (CZCFT)

Delete a VAM Data Set is called by Erase
{(CZAEJ), ADDCAT (CZCFA), and Recreate Pub-
lic Storage ({CZAXX) to delete a VAM data
set by deleting its catalog entry and mark-
ing all its DSCB and data page entries
"available” in the page assignment table.
If the data set is private, the volume or
volumes on which it resides are demounted.

Optionally, the associated JFCB may be de-

leted. (See Chart KF.)

Attributes: Read-only, public, privileged.

Entry Points:

CZCFT1 -- Main entry, entered via type-1
linkage.

CZCFT2 -- For generation data groups only,

entered via type-1 linkage.

Input: On entry, register 1 contains a
pointer to a three-word parameter list:

Word 1:-- If entered at CZCFT1, a pointer
to a 35-character (without userid) data
set name. If entered at C2ZCFT2, a
pointer to a 4d-character (includes
userid) data set name.

Word 2 -- A pointer to the JFCB to be
deleted if that option is chosen.

Word 3 -- A pointer to the JFCB deletion
indicator. This indicator is a one byte
flag which is set to X'00’' if no dele-
tion is to be done or to X'80' if the
JFCB is to be deleted.

Modules Called:

FINDDS (CZAEC1 or CZAEC2) -- Locates or
creates a JFCB for the data set when a
pointer to one is not provided by the
calling routine.



LOCFQN (CZCFL2) -- Get T-block to see if
BULK 1/0 pending.

SETXP (CEAH7) -~ Prepares the external page
table to allow a virtual storage page to
be read 1in.

Search SDST (CZCQEL1) -- Provides a count of
users currently sharing the data set.

RELEXPG (CZCEN1) -- Called to release all
data pages and DSCB slots used by the
data set and allccates them for future
assignment on the volume.

DELCAT (CZCFD1) ~- Deletes the catalog en-
try for the data set.

FREEMAIN (CZCHA3} ~~ Frees the space occu-
pied by the private volume table.

RELEASE (CZAFJ3 or CZAFJ6) -- Release the
JFCB when that option has been
specified.

READWRIT (CZCEM) -- Read in DSCB page.

DSCBREC (CZCEF1) -- Attempt recovery on a
read DSCB error.

WTL (CZABQl) -- Send message to operator
and record it in the system log.

Exits:

Normal -- Return to the calling routine
with one of the following codes in
register 15:

‘00" Data set deleted.

ou* Deletion not made due toO open
DCBs.

‘08" No deletion due to active
sharer.

'*oc® No parameter list passed or FQON
not indicated by Word 1.

*10° Shared data set not owned, not
unlimited access.

14" DSORG not VAM.

‘ic' Delete option specified, with
JFCB pointer 0.

Exrror -- Before continuing, a message is

written to the system operator and sys-
tem log via WTL under any of the follow-
ing conditions:

* When a good return code is not
received from RELEXPG.

e When an attempt to recover a DSCB with
a bad checksum is unsuccessful.

Section 2:

e When end-of-DSCBs occurs before end-
of-volume fields.

Operation: On main or secondary entry,
DELVAM saves input registers and estab-
lishes base registers for the CSECT ani
PSECT in conformance with linkage conven-
tions. The secondary entry, at CZCFT2,
allows a generation data group flag to be
turned on, and then joins the main logic.
The input parameter list is now checked for
the presence of fully gualified name. If
none is present, an error return 1is made to
the calling rcoutine. If the FQN 1is pre-
sent, a test is made for the presence of a
JFCB address. If no such address 1is given,
a call is made to FINDDS, to find a JFCB or
to create one. For a generation of a
generation data group data set, FINDDS 1is
called at a secondary entry point, CZAECZ,
using the userid specified in the input
parameter list. Otherwise, FINDDS is
called at CZAEC1 and task common will be
referenced for the userid. Once the JFCB
has been located or created, tests are made
to determine if only one DCB 1is open and if
the data set is VAM organization. If eith-
er test fails an error return 1is made to
the calling routine.

I1f DELVAM was called by LOGOFF, ABEND,
or Close, a call to LOCFQN is made to check
for Bulk I/0 pending. If it is pending,
normal return is immediately made to the
caller.

Next the data set must be tested for
sharing. This is determined by a call to
Search SDST. If the data set is sharei,
only one user may be currently accessing
the data set and the user deleting the data
set must pe either the owner or a sharer
with unlimited access. If either of tnese
conditions is not met, an error return 1is
made to the caller.

Once this testing is complete or if the
data set is not shared, DELVAM checks -0
see if a RESTBL exists. If one does e<ist,
the data set is still open and it must be
closed, calling Release at CIAFT6. On:e
the DCB is closed or if it was closed “o
begin with, a test is made to see if there
1is a DSCB. If none exists, there are a0
pages in the data set and processing will
continue with the JFCB release describ.d
below.

Data Set Page Release: When the data net
is deleted, all external pages occupied by
the data set are freed for future alloca-
tion to another task. If the data set is
private, a private volume table pointer is
stored in the caller's PSECT. After this
or if the data set is on public storage, a
dummy RESTBL is constructed. This 1s
necessary since the prior close of the DCR
caused the deletion of the RESTBL. Eé&<h

VAM Volume Format and Data Set Maintenance 12%




126

OSCE is then read in turn. For private
voiumes thexe may be several volumes in the
volume iist. These entries are skipped
over until the external page entries are
iound. These external page entries are
then moved to a parameter list area in pre-
paration for a call to RELEXPG. When the
rameter iist is full or when all e¢xternal
1e entries have been moved to the list,
EXPG is called to perform the release.
e pages are marked available for assign-
v 1n the page assignment table. This
procedare is repeated until all external
ges have been released. 1If, in the pro-
f releasing pages, an entire DSCB

is cleared of DSCBs, the DSCB page is
o added to the parameter list and it is
eased. Any errors encountered in
EXPG result in messages to the system
cperater and log.

£

JFCE helease:

Following the release of
sternal pages, the pointer to the dummy
RESTBL 1s cleared. Then, or if the data
set had no pages, the JFCB deletion indica-
©woxr is tested. 1If no deletion is

Part I1: Virtual Access Method (Vam)

requested, processing continues with Cata-
log Deletion below. The JFCB is released
by calling Release. An error return from
that routine results in messages to the
system operator and log.

Catalog pelet.on: 1f the catalog entry is
to be deleted, a call is made to DELCAT Lo
pexform the deietion. If an error return
is received from DELCAT, the operator is
notified and it is recorded on the system
log via WTL. The catalog entry will not be
deieted if the data set had no external
pages, if DEIVAM was entered by the Recre-
te Public Storage routine, or if the data
set is USERCAT or SYSCAT. Following the
deletion of the entry or if no deletion is
pertormed, the exit procedure is entered.
This process involves testing to see if the
data set is public or private. For private
data sets, a call is made to FREEMAIN to
release the virtual storage occupied by the
private volume table. DELVANM then returns
tc the calling routine by means of the
RETURN macro instruction.




The data set sharing facility provided
in TS3/360 requires that the dato sets to
be: shared be organized for access by one of
the virtual access methods. The sharing
concept also relies on a system ¢f inter-
locks which prevent the simultareous read-
ing and/or writing of one rocord by more
than one authorized user. Two types of
intericck are provided -- a read interlock
and a write interlock.

A read interlock prevents a ucer from
writing to a data set, data set nember, or
data set page. A read interlock is never
actually placed on a data set. The inter-
lock is implied by the presence of an entry
for the data set in the shared data set
table. When a user attempts to open a data
set, the shared data set table is searched.
if there is an entry in the table for the
data set, the write interlock is tested.

I1f that interlock is set, no other task may
access the data set. If the write inter-
lock is not set, a read interlock is
assumed and a second task may open the data
set for any operation which would impose a
read interlock. Several users may there-
tore have simultaneous read access to a
data set but if only one user has write
access to it, no other user®s task is
allowed any access. Read interlocks are
set on pages of a shared indexed sequential
data set. This interlock prevents other
users from writing to the interlocked page
but permits them to read from it.

A write interlock prevents read or write
access to shared data by any user other
than the one who caused the interlock to be
Set. Only one write interlock can be set
on a given data set at a time and once set,
it precludes the setting of read interlocks
on the data set. Additionally, if a read
interlock is in effect on a unit of data, a
write interlock cannot be set.

Interlocks are maintained in various
talbles depending on the data set organiza-
tion. Regardless of the table which con-
tains the interlock it is maintained in a
four byte field called the interlock word.
This field is aligned on a word boundary
and has this format:

A St s St
IW | R[N |I |
(R SN Y S

W - Write interlock

R - Read interlock

2]
)
-3
Lo
]
2

3: DATA SET SHARING

|

N - Number of interlocke currently set
I - Interlock for changing bytes R and N

A virtual partitioned data set is inter-
locked at the memver level. The interlock
word for each member of a partitioned data
set 1is contained i1 the member header in
the RESTBL (CHAMH{D). The interlock is set
according 1o the organization of the menber
and the option specified in the GPEN macre
instruction. The interlock is set when the
FIND macro instruction is issued, and
released when the STOW macro instructior is
issued or when the data set is closed.
Table 34 lists the open options, and the
type of interlock which is set for each.
Shared access for members depends on the
organization of the member as discussed
below.

Virtual sequential data sets are inter-
locked at the data set levei. The inter-
lock word for these data sets is 1ocated in
the data set entry of the shared data set
table (CHASDE}. The type of interlock
imposed depends on the option specified in
the OPEN macro instruction. Table 35 lists
these options and the applicable interlock.
The data set is interlocked when it is
opened and the interlock is released when
the data set is closed. Since several
users may have simultanecus read access to
a data set, a count is maintained of the
number of users currently accessing the
data set. BAs each user opens the data set,
the count of users is incremented. As each
user issues the CLOSE macro instruction,
the count is decremented and only when it
reacheg zero is write access permitted.

A virtual indexed seguential data set or
member is interlocked at the page level as
well as at the data set level. That is to
say, while one user is reading from one
page of a data set, other users are
restricted in their access to that page,
but may access other pages in the data set
assuming that the type of access attempted
does not violate the data set or member
level interlock. The page level interlock
words for virtual index sequential data
sets are contained in the external page
entries (CHAEPE) in the RESTBL. One word
of interlocks exists for each page of the
data set and the locks are set and reset by
the Movepage routine (CZCOC). Table 36
lists the effects of various open options
on page level interlocks.

A page level read interlock is placed on
a page when a GET or type-KY READ macro

Section 3: Data Set Sharing 127




iable 34. Effect of OPEN Option on Member
terlocks in Member Header

{WRITE i

gkRITE {VSAM member) i
{ READ (VISAM member) |

Table 35. Effect of OPEN Options ¢n Data

Set Interlocks in SDST

i
!
i
i
|
t
i
t
|
!
1
i
1
i
i
|
}
1
1
i
1
|
|
|
b

]
t
e + +
{ INPUT i mplied READ|Implied READ]|
e m e pomm e ——t- -1
jO ITPUT {WRITE | WRITE |
————————————— e
| INOUT ] |
[OUTIN {WRITE i Implied READ|
UPDATE 3 i i
o e o s e e e B S U i

iMote: No interlocks are set on VPAM |}
‘data sets at GPEN time. i

e s oo e S e . A i P P et s <A . e e SH SR A e e S P e e e e e e I ]

Ef fect of OPEN Option of VISAM
Page Level Interlock

T T e T 1
i EInterlock; {
?OPLV Option| Type H When Set i
~~~~~~~~~~~~~ e )
JIRPU ' READ iWhen page is read |
_______________________________________ 4
| UPDATE {WRITE {READ Exclusive, i
i i [Write by new key, |
; INOUT | |WRITE replace by |
i | {key, DELRAC |
j OUTIN | READ {READ by key and |
! | {all other opera- |
i } ftions causing a |
i i {page to be read }
= 3 i
{OUTPUT {None } |
[Y SV, e 3

instruction is issued. A page level wirte
interlock is set by the type-KX READ macro
instruction which also releases a page
level read interlock set by that task.
Other macro instructions which release a
page level read interlock when issued by
the task which set it are WRITE, ESETL,
DELREC, RELEX or CLOSE. If the task issues
any macro instruction which references
another page, the read interlock is
released. A page level write interlock is
released by the GET, type-KY READ, RELEX,
WRITE, DELREC, or CLOSE macro instruction
or by any macro instruction which

128 Part II: Virtual Access Method (VAM)

reterences a page other than the one in
which the write interlock is set.

CONTROL TABLE INTERLOCKS

VAM has two control tables which reside
in shared virtual storage - the RESTBL and
the SDST. Rcutines which manipulate these
tables must interlock them to prevent them
from being changed while in use. These
interlocks do not have the conventional VAM
interlock word format.

The SDST interlock is
at the keginning of the
While that lock is set, no other task may
access the SDST. Within the SDST, data set
and member entries are made toc record the
allocaticon of shared storage. The Search
SDST routine, which makes the SDST entry,
does not allocate the shared storage, but
simply reserves space in the SDST for the
allocation to be recorded. The reserved
space must be interlocked to prevent system
usage of the SDST entry before the alloca-
tion is actually completed. This is done
by setting the SPT number to X*FFFF', which
is an invalid SPT number. After allocation
of shared storage, the routine obtaining
the shared virtual storage will store the
actual SPT number in the SDST, thus releas-
ing the pseudo-lock.

a one byte field
SDST control entry.

The RESTBL interlock must be set by
those routines manipulating the RESTBL of
shared data sets. This includes most of
the VAM modules. The RESTBL interlock is
the first byte of the RESTBL header, and
has the same effect as a conventional write
interlock. Most VAM routines can be called
at a variety of levels; that is, when a
routine is called that may manipulate the
RESTBL, the interlock may or may not alrea-
dy be set. For this reason, each routine
attempts to set the lock. If the lock is
already set, the tasks must wait until it
is reset, unless it was set by the current
task against the current DCB. This infor-
mation is in the RESTBL. The 1D of the
task imposing the RESTBL lock is recorded
in the RESTBL header (RHDTID), and the
interlocks charged against a DCB are rec-
orded in the DCB header.

As with setting the RESTBL lock, each
routine which attempted to set the lock
must attempt to reset it, but only the rou-
tine which actually set the lock will
effect its release. This is accomplished
by storing, in the RESTBL header, the PSECT
location of the routine which caused the
lock to be set. When backing out of a nest
of calls, each routine will attempt to
reset the RESTBL lock, but if it did not
set it, a return is made to the next higher
level with the interlock still in force.

Sharing of virtuai organization data
sets is dependent upon the owner permitting
the sharing by means of the PERMIT command
and the user declaring his intention to
share the data set by means of the SHARE
command. The command system routines and
cotalog service routines set indicators in
the owner's catalog which indicate his wil-
lingness to share the data set, the users
with whom he is willing to share it, and
the access to the data set he wishes each
+o have. These routines also set indica-
tors in the user's catalog which associate
the data set name he is using with the
owner's data set.

Three routines in the access methods
provide the additional processing required
to facilitate the sharing of data sets.
The first two of these routines, Interlock
{CZCOH) and Release Interlock (CzZCOI),
maintain interlocks in various tables ir
the system. These interlocks prevent two
users from simultaneously updating a data
set.

The third of these routines is the
Search SDST routine (CZCQE). This routine
searches the shared data set table in an
effort to locate the name of a shared data
set or member of a shared partitioned data
set. This table consists of a group of
chained data set or member entries, which
correlate opened data sets or members with
their respective shared page tables. These
shared page tables, in turn, specify the
location of each page of the data set in
main storage, and are followed by the
external shared page tables, which list the
external storage addresses of the data set

pages.

If a data set is not already listed,
this routine will create an entry for it;
if the data set is listed, the count of
users sharing it is incremented. This rou-
tine is also used to delete entries or
decrement the count of users sharing the
data set, as each user closes his IXB asso-~
ciated with the data set. A description of
Search SDST is included in the preceding
section.

Interlock Routine (CZCOH)

Interlock is called by other system rou-
tines to impose read (R) or write (W)
interlocks on an interlock control word.
The type of interlock set depends upon the
OPEN option. Tables 34, 35, and 36 sum-
marize the effects of these options on the
operation of Interlock. The interlock con-
trol words are used to control shared
access to the POD, RESTBL (header or
external page entries), member headers, and
SDST data set entries. When a write inter-
lock is imposed, no additional read inter-
locks may be set. If a read interlock is

set, the task attempting to set a write
interlock will wait until all read inter-
locks have been removed by the tasks that
set them. No additional read interlocks
will be set during this wait. (See Chart
LA.)

Restrictions: 1t is impossible to impowue
more than 255 read interlocks with this
routine.

Attributes: Read-only, reenterable, privi-

leged, public, system.

Entry Point: CZCOH1 -- Entered via type-1l

iinkage.

Input: Register 1 contains the address of

the following parameter list:

word 1 -- Address of the interlock control
word.

Word 2 -- Address of the type code specify-
ing the interlock to be set.

Wword 3 ~- Address of the DCB associated
with the data set on which the lock is
being imposed.

The type code pointed to by word 2 is a
2-byte field described as follows:

Byte 1 specifies the type of interlock to
be reset:

C*'R' = Read
C'W' = Write

Byte 2 specifies the table in which the
interlock is to be reset:

X'00' = SDST

X*04°* = RESTBL

X*08* = POD

X*'0C' = Member Header
X*10' = External Page

The DCB address normally specified in
word 3 may be set to zero if it is not
known. However, during the time that an
interlock remains imposed after no DCB
address was specified, it must be assured
that the system will not ABEND.

Modules Called:

TSEND {CEAP9) -~ End this task®'s time slice
while waiting for a lock to be reset by
another task.

SYSER {(CERIS2)} -- Repurt invalid parameters
as input.

ABEND {CZACPl) -- Terminate task after
SYSER.

XTRCT {(CEAHO3) -- Get task ID for RESTEL
header area.

Section 3: Data Set Sharing 129

Lxits:

Normal —-- Bxlt 15 (0 the ¢alling routine
with the specified interlock set. No
completion code 15 given.

Errc:rs -- The type codes supplied are
checked for validity and a SYSER &nd
ABEND are given it either is invalid.

Cperation: Initialization and general

register storage is executed in conformance

with linkage conventions. Base registers
are declared for the CSECT and PSECT, para-
reter list, DCB, DCB header, interlock word
and type codes.

The interlock type and the table type
where the interlock is to be imposed are
ested for wvalidity.

The write interlock byte of the inter-
lock word is tested to determine if a write
interlock is already in force. If the
write interlock is on and the request is
not for a RESTBL lock, time slice end is
forced by calling TSEND. This allows other
tasks to continue processing and eventually
release the interlock that the current task
was attempting to set.

The RESTBL lock is handled slightly dif-
ferent from other interlocks. Each routine
which manipulates the RESTBL attempts to
set a write interlock on the RESTBL, which
is accounted for on a DCB within task
pasis. A call to the interlock routine may
be executed for a RESTBL interlock and the
RESTBL may already be locked. 1If this con-
dition occurs and the same task which set
the initial lock is attempting to set
another against the same DCB, control is
returned to the caller, as if the lock had
just been set. Otherwise, TSEND is called.

if the write interlock byte of the
interiock 1s not set, interlocks may be set
as desired. The locks will be recorded in
the interlock summary word of the asso-
ciated DCB headexr. In addition, if the
lock is set on the RESTBL, the virtual
storage address of the PSECT of the calling
routine is saved in the interlock word, and
is used in the interlock reset process.

The interlock to be set is either read
or write. The write lock which is already
set is recorded in the DCB header, and con-
trol is returned to the caller by the
RETURN macro instruction if no read locks
are currently set. Otherwise, TSEND is
called to wait for the read locks to be
released.

Read locks are set cumulatively. The
read interlock is set and the read inter-
lock counter is incremented to indicate the
presence of one or more read interlocks.
This read interlock process is controlled

130 Part II: Virtual Access Method (VAM)

by an additional lock pyte within the
interiock word itself. The write lock is
reset, the read lock is accounted tor in
the DCB header, and control 1s returned to
the caller by the RETURN macro instiuct ion.

Release Interliock Routine (CZCO1)

Release Interlock (RLINTLK) is called by
system routines to release read (R) and
write (W) interlocks on an interlock ccn-
trol word. (See Chart LB.)

Attributes: Read-only, reenterable, privi-
leged, public, system.

Entry Point: CZCOJI1 -- Entered via type-1

linkage.

Input: Register 1 contains the address of
a 3~word parameter list as follows:

Word 1 -~ Address of interlock word.

Word 2 -- Address of the type interlock.

Wword 3 -- Address of DCB being processed.
The type of interlock pointed to by word

2 of the parameter list is a 2-byte field

described as follows:

Byte 1 specifies the type of interlock to
be reset.
C'R"'
C'W*

Read
Write

non

Byte 2 specifies the table in which the
interlock is to be reset:

X*00*' = SDST
X'04* = RESTBL
X°08* = POD

X*OC* = Member Header
X'10* External Page

The DCB address normally specified in
word 3 of the parameter list may be set to
zero, if it is not known. It should be
known, if it was known at the time the lock
was set. If it is not specified the inter-
lock summary bits in the DCB header will
not be reset.

Modules cCalled:

TSEND (CEAP9) -- End time slice while wait-
ing for a lock to be reset by another
task.

SYSER (CEAIS2) -- Invalid input to CZCOI.

ABEND (CZACP1) -- Terminate task after
SYSER.

VDMEP (CZCQK} -- When desired lock to be
set is not set.

Exits:
Normal -- Exit is to the calling routine by

the RETURN macro instruction. No com-
pletion code is given.
Error -- The type codes are checked for

validity and SYSER and ABEND are called
1f either is 1invalid.

VDMEP is called if an attempt is made to
release a lock that is not set.

Operation: Initialization and general
register storage is executed in conformance
with linkage conventions. Base registers
are declared for CSECT and PSECT, parameterxr
list, DCB, DCB header, interlock word and
type codes.

If the table type code specified is
invalid, SYSER is called. Also, if the DCB
1s specified, and the summary bit in the
DCB header corresponding to the interlock
intended to be released does not indicate
that the lock is on, VDMEP is called.

A release request may be for a read or a
write interlock. A special case of this is
the RESTBL interlock. The RESTBL interlock
must be set and must be released by the

same routine that set it. The PSECT
address of the routine requesting reset ic
compared to the PSECT address stored in the
interlock word. If they are the same, the
lock is reset and control is returned to
the caller by the return macro instruction.
Otherwise the lock is not reset before
returning.

A request to release a write interlock
will cause the interlock to be reset. If
the DCE is specified and the summary doec
not indicate that the requested lock is
set, SYSER is called. 1If the summary does
include the requested lock, the bit is
cleared and control is returned to the
caller by the RETURN macro instruction.

Read interlocks are released by decre-
menting the read interlock counter. When
the counter goes to zero, the physical and
read interlock is cleared.

The manipulation of the read interlock
and the read interlock counter are con-
trolled by an additional lock in the inter~
lock word. The control lock is reset and
the summary bits are reset if a DCB was
specified.

Section 3: Data Set Sharing 131

OPEN _AND CLOSE PROCESSING

This section describes the routines
which prepare < data set and its related
control blocks for processing (OPEN) and
routines which remove a task's references
to a data set and release unneeded space
wion a task no longer wishes to reference
the data set (CLOSE). The routines in this
seCtion can be entered as a result of one
of seven macro instructions being issued:

L. OPEN -- a user wishes to access or
create a data set.

2. DUPOPEN -- a user wishes to access or
create a duplexed data set.

3. FIND -- a user wishes to access a
member of a partitioned data set.

4. CLOSE -- a user has finished using a
data set.

5. DUPCLOSE -- a user has finished using
a duplexed data set.

6. STOW --a user has finished using a
member of a partitioned data set.

7. ABEND -~ a task is being abnormally
terminated and its data sets must be
closed.

Figures 22 and 23 depict the interaction
among the various modules involved in open-
ing and closing a data set. The routines
Open Common {CZCLA) and Close Common
(CZCLB} contain the initial point of link-
age from the OPEN and CLOSE macro instruc-
tions for ali access methods and have been
described earlier in this manual.

Aliszo included in this section is a
description of the VAM ABEND Interlock
Reiease routine. When a task is abnormally
terminated because of some error condition,
the close processing is performed to close
any data sets that the task may have been
using. The VAM ABEND Interlock Release
routine is called to locate and to release
any interlocks which were set when the
ABEND was issued.

OPEN PROCESSING

The routines associated with Open pro-
cessing include CPENVAM, DUPOPEN, VSAM
Open, and VISAM Open.

132 Part II: Virtual Access Method {(VAM)

OPENVAM Routine (CZCOA)

OPENVAM :5 called by Open Common (CZCLA)
to perform DCH and data set initialization
common to all of the virtual access

methods. (See Chart MA.)
Attributes: C(losed, reentrant, privileged.

Entry Point: CZCOAl -~ Entered via type-1

linkage.

Input: Register 1 contains a pointer to a

four word parameter list as follows:

Word 1 -- Address of the DCB.

Word 2 -- Address of the JFCB.

Word 3 -- Address of "Fence Straddler” save
area.

Word 4 -- Address of the public or private

volume table (PVT).

Modules Called:
Connect (CZCG7) -- Connect task to shared
RESTBL

ESA lock (CZCEJ1) -- Lock PAT.
Unlock PAT.

(CZCEI2) -~

REQPAGE (CZCOEl) -- Assign directory page
{(VPAM) .

RELEXPG (CZCEN1) -- Release pages.
DELCAT (CZCFD1l) -- Release catalog entry.
FREEMAIN (CZCGA3) -- Free virtual storage.

Search SDST (CZCQEl1l) -- Creates a shared
data set table entry for a newly opened
data set or increments the count of
users for the data set if it is already

open.

Interlock (CZCOH1) ~- Interlocks the RESTBL
of a shared data set when the routine is
operating on it.

Release Interlock (CZCOI1) -- Releases the
RESTBL interlocks placed on shared
RESTBLs.

DSCB READ/WRIT (CZCEM1) -- Regquest a PAT
write.

VDMEP (CZCQK1) -- Issue diagnostic message
and terminate function but not task.

‘ FIND)

‘ OPEN '

‘ DUPOPEN)

, C
Fing SO o DUPOPEN
{Czcon (CZCLA) (CZCEY)
OPENVAM
(CZCOA)
Open Open
Sequential Slndex?i |
(CZCOP equentia
) (czcrD)
Figure 22. Module Interaction in VAM Open Processing

(STOW ,

< ABEND >

‘ CLOSE ’

< DUPCLOSE ’

sTOW ABEND Comon DUPCLOSE
(€ZCoK (CZACP) czeLs (czCE2)
CLOSEVAM
(CZCOB)
Close
Ciose» Indexed
Sequential Sequential -
(CZCOG) (CzcaK

Figure 23. Module Interaction in VAM Close Processing

Section 4: Open and Close Processing 133

DTS RECOVLRY (COCEFi; ~- Attelpts to reco-
ver from an error when the DSCH is read.

GETMAIN {CIZCGYS -- Obtains virtual storage
for nonshared RESTBLS and for required
directory pages for nonshared data sets.

GETSMAIN (C2CG6) ~- Obtains shared virtual
storage for shared RESTBLS.

FLADEXPG {CZCEL1) -~ Assigns external
sTorage space to a new data set.

WRITDSCB (CICTEW1) -~ Writes out updated
ot

2SCBs t ne volume.

CKCLS {CEAH24) -~- Obtains the protection
class of the task.

XTRCT {CEARBO03) -- Obtains the ID of the
task.

kxpand RESTBL (CZCQI1) -- Increases the
s.ze of the nonshared RESTBL when neces-~
sary t¢ contain new headers.

MOVEPAGE {CZCDC1} -- Reads in the directory
pages of a partitioned or indexed
sequential data set.

VSaM OPEN (CZCOP1) -~ Performs open proces-
$ing unigue to seguential data sets.

VISAM OPEN {C4CPZ1) -- Perxrforms open pro-
cessing unique to indexed sequential
data sets.

Exits:
Noxrmal -- Return to calling routine.
Zrror -- VDMEP is called under the follow-

ing conditions:

¢ Error encountered trying to PGOUT
updated DSCB.

© D3CB has invalid chain field.
» Attempt to expand shared data set.

¢ Reiative volume number is ocut of
voiume table 1limit.

s Bad return code from CZCEM; failure to

read DSCB.
* An attempt to open a non-VAM data set.

® Search SDST could not link to shared
VM.

¢ Shouid be E-type DSCB but is not.
e Total pages used by data set in error.
» External page request exceeds amount

available.

134 Part II: Virtual Access Method (VAM)

¢ Attempt to open new data set for
read-only.

® Two active users using private shared
data set.

 Unrecoverable DSCB corror.
number

¢ DSCB does not contain correct
of extents.

Operation: On entry, OPENVAM saves all
input registers and establishes base regis-
ters for the CSECT, PSECT, RESTBL, DCB, and
JFCB. The user's authorization to open the
data set and the data set organization are
checked. If the user is not authorized to
open the data set or if the data set is not
VAM, VDMEP is called.

Two types of data sets are processed by
OPENVAM, shared and nonshared. While the
objective of OPENVAM is functionally simi-
lar for both types, that is, to prepare
data sets for access, they are handled dif-
ferently. The logic fiow of OPENVAM
diverges at specific points to accomplish
processing for shared or nonshared data
sets.

One of the functions performed by OPEN-
VAM is to build a RESTBL for a new data
set. Tests are made to see if the data set
has already been opened. If the data set
has been opened, a RESTBL already exists
and this processing can be skipped. The
tests for opened DCBs differ for shared and
nonshared data sets. If the data set is
shared, the task currently opening the data
set may have opened it. In this case, the
count of open DCBs in the JFCR is nonzero.
iIf another task has opened the data set, an
entry will exist in the shared data set
table.

A call Ais made to Search SDST (CZCQE) to
locate or to create an entry. Two return
codes from CZCQE are acceptable. One code
indicates that an entry existed. In this
case, a call is made to Connect {CZICG7) to
connect the task to the shared RESTBL which
exists. The second code indicates that no
entry existed but one was created. In this
case, the RESTBL must be created since the
data set is newly opened. Any return code
other than these two is considered an error
and VDMEP is called.

If the task currently opening the data
set had DCBs already open for it or if the
task was connected to the shared RESTBL,
the following processing to create the
RESTBL is skipped.

For nonshared data sets, the test
involves a check of the JFCB to see if the
count of open DCBs is nonzero. The same
criteria apply to nonshared data sets as to

shared.
built.

If DCBs are open, no new RESTBL is

tuilding the RESTBL: For all newly opened
old data sets, the format-b DSCB 535 read
into virtual storage. This is accomplished
py means of the SETXP macro instruction
which simply adds the external page number
to the external page table for the task.
Any reference to the DSCB page will result
in a paging operation by the resident
supervisor. Once the DSCB page is in Vir-
tual storage it is checked for errors. A
checksum error results in & call to DSCB
Recovery (CZCEF) to attempt recovery. A
pad volume pointer, a pointer to a non-DSCB
page, a bad relative page number tor a
device, or the case where data set names in
the JFCB and the DSCB do not match, result
in a VDMLP call.

Once the format-E DSCB has been read in,
the number of pages required to contain the
RESTBL is computed. For new data sets,
this number is a function of the primary
space allocation as indicated in the JFCB.
For existing data sets it is a function of
the size of the data set as it exists. If
the data set is shared, this RESTBL size is
increased by 2 pages. If the data set is
SYSLIB, 10 pages are added; for SYSCAT, 5
pages are added. This increment is used
because a shared RESTBL cannot be expanded
and the value 2 represents a "best guess"®
of the ultimate size of the RESTBL. The
value should be adjusted as installation
needs dictate. If the shared data set is
also index sequential, an additional 2
pages are used.

After the RESTBL size has been computed,
a call is made to GETMAIN or to GETSMAIN to
obtain virtual storage for the RESTBL.
When virtual storage has been obtained for
the RESTBL, it is interlocked, if shared,
and the RESTBL is filled in. This process
starts with the building of the RESTBL
header. The total number of pages is
stored; if the data set is not new the
counts of overflow, directory, and data
pages are stored, and, for all data sets,
the number of assigned pages is compared to
the number of "in use®™ pages. If more
pages are in use than are assigned, VDMEP
is called. If no error exists, the RESTBL
is chained to the JFCB and pointers to the
format-E DSCB and the volume table are
placed in the RESTBL.

Next, the data set is checked to see if
it is new. If sco, a call is made to FIN-
DEXPG (CZCEL) to get external pages for
assignment to the data set, and the pages
returned are placed in the RESTBL and
marked assigned but not in use. A call is
later made to WRITDSCB (CZCEW) to place the
updated entries in the DSCB chain. If an
error return is received from FINDEXPG,

VDMEP is called. For existing data sets, a
test is made to see if the volume is public
or private. In the case of private
volumes, a list of private volumes is con-
tained in the DSCBs before the page
entries; thesce volume IDs must be skipped
and are not plaeced 1n the RESTBL. For
existing data sets, the calls to FINDEXPG
and WRITDSCB are not required.

Wwnen the external page entries from the
DSCB, or for new data sets from the FIN-
DEXPG routine, are placed in the RESTBL, a
distinction is made between shared and non-
shared data sets. For nonshared, the
entries are simply moved into the RESTBL.
For shared data sets, an interlock word
must be provided before each page entry.
This interlock word is inserted and set to
zero as each entry is placed in the RESTBL.

When the RESTBL has been built, the DCB
header must be built and added to the chain
of headers in the RESTBL. This last step
is performed first. The available space in
the RESTBL is checked to see if there 1s
space to contain the new header. If no
space is available, a call is made to
Expand RESTBL to increase the size of the
RESTBL. This is only done for nonshared
data sets. If the condition occurs for a
shared data set, a call is made to VDMEP.
When space has been found to contain the
header, it is chained to the list of head-
ers in the RESTBL and the DCB header is
then built.

Building tne DCB header involves chain-
ing it to the DCB, the RESTBL, the RESTBL
header, and the JFCB. The protection class
of the task is determined by a call to
CKCLS (CEAQH4), and the task ID by a call to
XTRCT (CEAH2); these values are stored in
the DCB header. The VAM read-only flag in
the JFCB, if turned on by Common Open, will
be turped off and the read-only access flag
turned on in the DCB header. Finally, the
address of the directory or the POD is
placed in the DCB header.

If the data set is shared, there are no
other DCBs open, and the data set is either
partitioned or index sequential, it may be
necessary to assign directory pages. If no
directory pages exist for the data set, a
call is made to Request Page (CZICOE) to
assign the first page as a directory page.
After this or if directory pages existed, &
call is made to MOVEPAGE to read the direc-
tory pages into virtual storage, and the
number of directory pages is placed in the
RESTBL. Next, or if the data set was par-
titioned or sequential, or if the data set
was already opened, the access dependent
open routine is called as described below.

For nonshared data sets the processing
is essentially the same with two excep-

Section 4: Open and Close Processing 135

vfions. First, a call is made to GETMAIN
tor virtual storage space pryior to the call
to MOVEPAGE. This is done to provide space
for the directory pages. Second, the count
of directory pages is not updated in the
AESTEL and the access dependent open rou-
tines are called.

Access-Dependent Open Processing: The data
set .15 now tested to determine its organi-
zation. 1If the data set is sequential,
VSAM OPEN (CZCOP) is called; if it is index
seguential, VISAM OPEN (CZCPZ) is called.
Tnese¢ routines perform open processing
unigue to the data set organization. If
the data set 1s partitioned, a member head-
er i3 built and added to the chain of memb-
er headers in the RESTBL. This is done in
the same manner as the adding of the DCB
header with the call to Expand RESTBL for
nonshared data sets, when necessary, and
the call to ABEND when the RESTBL cannot
contain the header for a shared data set.
Once the member header has been built, it
15 linked to the DCB header, the RESTBL
interlock is released, if the data set is
shared, and control is returned to the cal-
ling routine.

DUFOPEN Routine (CZCEY)

Tne function of DUPOPEN is to open dupl-
icate data control blocks for a duplexed
data set residing on public volumes. One
copy of the data set is the primary Copy-
The secondary copy resides on a separate
public device and is, at all times, an
exact copy of the primary copy. As such,
the secondary copy c<an be used for recovery
purposes when a read error occurs on the
primary copy-.

DUPOPEN flags the JFCBs (TDTDC1l) to ind-
icate the primary and secondary copies, and
chains the two JFCBs by placing, in each
JFCH, 2 pointer to the other (TDTDUP). By
caliling Open Common and, subseqguently,
GPENVAM, DUPOPEN builds a KESTBL for each
copy of the data set and opens the DCBs.
The address of each RESTBL is placed in its
corresponding DCB and the field DHDDUP of
cach DCB header is set to point to the
other RESTBL. (See Chart MB.)

Attributes: Closed, fetch protected, pri-
vileged, reentrant, nonrecursive, and
residing in public virtuwal storage.

Entry Point: CZCEY1 -~ DUPOPEN is entered
by a type-1 or type-2 linkage generated by
the expansion of the DUPOPEN macro
instruction.

Input: Register 1 contains the address of
the following parameter list:

Word 1 -~ Address of the primary DCB.

136 Part II: Virtual Access Method (VAM)

Word 2 -- Address of the secondary DCB.

Word 3 -- Address of an option byte which
contains:
bits 0-3 Not used
bits 4-7:
0000 Input
1111 Output
6001 Read Back
0011 Inout
0111 Outin
0100 Update
Modules Called:
OPEN COMMON ({CZCLAO) -~ A single call is

made to open both the primary and secon-
dary CCBs.

SYSER (CEAIS2) ~- Minor system error with
message.

ABEND (CZACP1l) -- Abnormal task termina-
tion.

FINDIJFCB (CZAEB) -- To create a JFCB when

one is nout found for the DCB being dup-~
licated OPEN.

Exits:
Normal -- Return to the calling routine.
Error -- ABEND is called under the follow-

ing conditions:

e No JFCB could be found or created for
the primary or secondary DCBs.

e Data set not public.

» DCBs not compatible.

e Data set not VAM organization.

e Same JFCB specified for both DCBs.

e« JFCE specified has been found in
JOBLIB.

SYSER is called before each ABEND.

Operation: When DUPOPEN is entered,
register 1 contains a pointer to a paramet-
er list which, in turn, contains pointers
to the primary and secondary DCBs. DUPO-
PEN, after performing the usual register
save and base register initialization,
saves the addresses of these DCBs and the
open option in its own PSECT. DUPOPEN then
begins to scan the list of JFCBEs in the TDT
beginning with the last JFCB created and
working back toward the first.

For each JFCB it encounters, it compares
the data set name in the JFCB with that in
the DCB. If no matching JFCB is found in
the entire list of JFCBs, FINDJFCB is

called to help create one. When the JFCB
for the first DCB is found, 1iis address is
saved and the same procedure s repeated
for the second DCB.

When both JFCBs have been located and
tested to ensure they are not the same
JFCB, they are examined to ensure that the
corresponding data sets are on public
storage and are VAM organization. If eith-
er data set fails either test, the task is
terminated and is sent the appropriate
error message.

A test is made to ensure that the DCB is
not already in the user's JOBLIB.

Next, a test is made to see if any DCBs
have been opened for the data set. If none
nas, the JFCBs are chained together and a
flag is set in each to indicate which is
the primary and which is the secondary.
when this is done or if some DCB had alrea-
dy been opened for this data set, a para-
meter list is constructed for OPEN COMMON.
This parameter list contains the addresses
of both DCBs and the open option indicator.
OPEN COMMON is then called to open both
DCBs and is passed the address of the para-
meter list.

On return, the two new DCBs are compared
to ensure that they match. If they do not
match, ABEND is called and a message is
sent to the task. If the DCBs do match,
DUPOPEN links the corresponding RESTBLs and
returns to the caller.

YSAM Open Routine (CZCOP)

VSAM Open is called by OPENVAM (CZCOA)
and by FIND (CZCOJ) to initialize the data
set buffers and the DCB to allow processing
of a virtual sequential access method
{(VSAM) data set (See Chart MC.)

Attributes: Read-only, reenterable, privi-
leged, public.

Entry Point: CZCOP1 -- Entered via type-1
linkage.
Input: Register 1 contains the address of

the DCB to be opened.

Modules Called:

GETMAIN (CZCG2) -- Obtain virtual storage
space for the sequential buffer to be
associated with this DCB.

SETL (CZCOT1) -- Initialize data set to
begin processing at beginning or end.

Exits:
Normal -- Return to the calling routine.

Exrror -- VDMEP is called under the follow-
ing conditions:

e Record length is specified greater
than 1 segment (1,048,576 bytes).

s Record format code is in error, that
is, not 'V', ‘'E' or 'U'.

» Record format is undefined, and record
length is not a multiple of 4096
bytes.

oOperation: General registers are stored in
conformance with linkage conventions and
base registers are declared for the PSECT
and CSECT, a DCB, DCB header and a RESTBL.

The V-cons for the sequential user
macros GET, PUT, PUTX, and SETL are stored
in the DCB. These sequential routines are
*fence sitters.”™ Their PSECTS cannot be
used for storage (save areas), therefore,
save areas are allocated dynamically. Open
common gets a "scratch" page for this pur-
pose and its location is stored in the GET
R~con location in the DCB by OPENVAM. VSAM
Open takes that value, computes save area
locations for the other macros and stores
the computed values in the respective R-con
locations in the DCB.

VSAM Open is responsible for establish-
ing input/output areas in virtual storage
for the sequential access method. The
space requirement is computed from the log-
ical record length declared in the DCB
(DCBLRE) at OPEN time. The maximum allow-
able record length is 1,048,576 bytes (1
segment); if this value is exceeded, ABEND
is called to terminate the task.

The sequential access method processes
three types of record format - fixed, vari-
able and undefined. Special considerations
are applied to each format in the alloca-
tion of 1I/0 space.

Undefined records must have page-
multiple record length. ABEND is called if
the record length (DCBLRE) 1is not in page
miltiples.

Variable-length records have eight bytes
of space control information appended to
each record (four bytes preceding the reco-
rd, provided by the user, and four bytes
following, provided by VSAM). This
adjusted value record length plus control
bytes is used to compute the actual amount
of storage required.

For fixed-length records whose record
length is a page, only one 1/0 page is
needed.

For variable-length and fixed-length
records other than page multiples, a mini-
mum of two I/0 pages is required. GETMAIN
is called by the GETMAIN macro toc obtain
the virtual storage to be used as 1I/0

Section 4: Open and Close Processing 137

areas. The virtuael storage iccation of
this area 1s stored in the DCB and the DCB
header.

The record length (DCBLRE) is saved in
the DCB header {(DHDMRL) &s the maximum log-
ical record length. £ this value is ever
exceeded, and the condition can be
detected, ABEND will be called. This could
happen while processing undefined or
variable~-length records where the record
length is defined dynamically by the user.

VSAM Open is also responsible for the
initial positioning of the data set. A
cali is made to SETL {(CZCOT) to set DCBLPA
to the appropriate value. The DCB ogen
option {(DCBOP1l) is used to determine what
that value should be. For input, update,
or INCUT, the data set is logically posi-
tioned to the beginning. For output or
OUTIN the data set is positioned to the
iogical end.

control is returned to the caller by the
RETURN macro.

VISAM Open Routine (CZCPZ}

VISAM Open is called by VAM general sex-
vices Open and by Find, to initialize DCB
and page buffers. (See Chart MD.)

Attributes: Read-only,
ic, privileged.

reenterable, publ-

Entry Point: C2ZCPZ1 -- Entry to VISAM Open
is by type-1 linkage (privileged to
privileged).

Input: Register 1 contains the address of
the DCB.

Modules Called:
GETMALIN (CZCGA2) -- Obtain page buffers for
data and overflow pages.

SETL i{CZCPC2) -- Position data set accord-
ing to COPEN option.

Exits:
Normal -- Return to the calling routine.
Error -- ABEND is called if key offset +

key length is greater than record

length. VDMEP is called under any of

the following conditions:

« Key length is less than the minimum.

s Reccrd length exceeds maximum.

e Rey offset goes beyond record.

e Overflow pages greater than 240, or
directory pages greater than 255.

138 Part II: Virtual Access Method (VAM)

¢ Data set opened for lnput or Inout and
no data pages.

Operation: General registers are stored in
conformance with linkage conventions, and
base registers are declared for the CSECT
and PSECT, a DCB, DCB header and a RESTBL.

The V-cons for the index sequential user
macros GET, PUT, and SETL are stored in the
DCB. These index sequential routines are
*fence sitters.® Their PSECTS cannot be
used for storage (save areas), therefcre,
save areas are allocated dynamically on a
DCB basis. Open Common gets a "scratch”
page for this purpose, and its location is
stored in the GET R-con location by OPEN-
VAM. VISAM Open takes that value, computes
save area locations for the other macros
and stores the computed values in the
respective R-con locations in the DCB. The
PUTX macro is not used by VISAM Open. Its
R-cons and V-cons are zeroed tc prevent any
erronecus usage.

Legality checks are made on DCB
information-key length (DCBKEY), record
length (DCBLRE), and relative key position
{DCBRKP) .

The minimum key length is one byte.

The maximum logical record length of a
VISAM data set is 4000 bytes.

The origin of the relative key position
must be within the range of the logical
record length. Also, the relative key
position plus the key length must not
exceed the logical record length.

DCB fields peculiar to VISAM are
initialized.

Data records may never cross page boun-
daries in’index sequential organization,
therefore, only one virtual storage page is
required as an I/0 buffer. This is
obtained by the GETMAIN macro.

Where this is not the first DCB open for
a nonshared data set within the same task,
the DCB will be linked to the existing page
buffer, and no call to GETMAIN is
necessary.

If overflow pages exist, a virtual
storage page is also needed as an overflow
page 1/0 buffer. The maximum number of
overflow pages is 240.

Having obtained all necessary virtual
storage space, VISAM Open will logically
position existing data sets (that is,
RHDDAT=0). A nonexistent data set may not
be opened for input, update or inout OPEN
options. If there are no data pages, VISAM
Open returns to the caller by the RETURN

macro. If the data set has data pages, a
SETL (CZCPC) it executed as defined by the
OPEN option. Input, update and inout cause
2 SETL to the beginning of the data set.
Output and outin cause a SETL to the end of
the data set. Control is then returned to
the caller by the RETURN macro,

CLOSE PROCESSING

The Close routines consist of CLOSEVAYN,
DUPCILOSE, VSAM Close, VISAM Close, and VAM
ABEND Interlock Release.

CLOSEVAM Routine {CZCOBRB)

CLOSEVAM is called by Close Common or by
DUPCLOSE to perform close processing for a
given DCB. It may also be called by ABEND
to close the DCB for a task which is being
abnormally terminated or by VDMEP if a
function (but not the task) is being ter-
minated. The major functions of CLOSEVAM
are to:

®» Delete only the DCB header for data
sets which have other DCBs open.

* Release assigned but not used external
pages of the data set by calling
RELEXPG. This step is omitted if the
HOLD option has been specified.

* Update the DSCBs on the volume by cal-
ling WRITDSCB.

®* On the close of the last DCB open for
the data set, the RESTBL and, if the
data is partitioned, the POD are
deleted by calling FREEMAIN.

* Delete the data set, its catalog entry,
and its JFCB if “"delete at close" is
specified. This is accomplished by
calling DELVAM.

¢ If the data set resides on a private
volume and the last open DCB is being
closed, the volume table is deleted by
calling FREEMAIN. (See Chart ME.)

Restrictions: CLOSEVAM may not be called
if the specified DCB is not open.

Entry Points:

CZCOB1 -- Normal entry via type-1 linkage.
CZCOB2 -~ Direct entry from close command.
input: Register 1 contains the address of

the DCB being closed.

Modules Called:
Interlock (CZCOH) =-- Interlocks the RESTBL
for shared data sets.

Search SDST (CZCQE) -- Deletes the shared
data set table entry for the task clos-
ing the DCB.

VSAM Close (C2C0OQ) -- Performs close func-

tions unique to sequentially organized
data sets.

VISAM Close (CZCQA) -- Performs close func-
tions unique to indexed sequentially
organized data sets.

Stow (CZCOK) ~- Stows a member of a parti-
tioned data set and calls the appropri-
ate access dependent close routine.

MOVEPAGE (CZCOC)
required.

-~ Writes out the POD when
RELEXPG {CZCEN) -~ Releases unused data set
pages when the data set is closed.

DSCB READ/WRIT (CZCEM)
out a format-E DSCB.

-~ Read in and write

ESA LOCK (CZCEJ) -- Lock and unlock the
PAT.
DELVAM (CZCFT) ~-- Deletes a data set, its

catalog entry, and the associated JFCE
when the "delete at close® option is
specified and the DCB being closed is
the last one open for the data set.

WRITDSCB (CZCEW) -- Updates the DSCBs on
the volume when required.

FREEMAIN (CZCGA) ~-- Releases virtual
storage occupied by the RESTBL, directo-
ry pages, and buffer pages.

Release Interlock (CZCOI) -- Releases the
interlock on the RESTBL for shared data
sets which still have DCBs open against
them.

4

Disconnect (CZCG8) -- Disconnects the task

from the shared RESTBL.

SYSER (CEAIS) -~ peclares system errors as
listed under "Exits"”.

ABEND (CZACP) -- Abnormally terminates a
task under the same error conditions as

for SYSER.
Exits:
Normal -- Return to the calling routine.
Exrror -- SYSER, then ABEND is called under

any of the following conditions:

® Search SDST cannot find data set
entry.

e Data set being closed is neither

sequential, indexed sequential, nor
partitioned.

Section H4: Open and Close Processing 139

® ryrroy return from Stow.

® MOVEPAGE unable tc write out updated
POD.

= DELVAM unable to delete a data set and
its cataliog entry.

2 D3CB Read/Writ unable to read or write
DECB.

Operation: For entry at CZCOB1l: On entry,
CLOSEVAM saves the input registers and
establishes base registers for the CSECT,
PSECT, JFCB, DCB, RESTBL, DCB headerxr, and
member header. If the data set is shared,
the RESTBL is interlocked by calling
interlock.

When CLOSE {TYPE = T) is specified for a
VAM data set, only data pages, directory
pages and DSCBs, where required, are writ-
ten to external storage. The data set will
remain open and in the same condition as
would follow a normal OPEN.

Nonpartitioned data sets are positioned
{S5£TL) according to the original OPEN
option and data set organization prior to
the completion of the CLOSE (TYPE = T).
When partitioned data sets are processed, a
STOW~R is issued against the checked out
members, as during a normal CLOSE. A FIND
must be issued by the user if the member is
to be reprocessed.

If not a TYPE = T, when the data set is
sequential or index sequential, the corres-
ponding access dependent close routine is
called. If the data set is partitioned and
there is a member still checked out, a call
is made to STOW to update the POD and to
close the mewber by calling the appropriate
access dependent close routine. If an
error return is received from STOW, SYSER
and ABEND are called.

Following the above processing or if the
data set is partitioned but has nc members
checked out, a test is conducted to deter-
mine 31f the POD must be written out. Four
conditions must exist for this to occur:

1. The data set must be partitioned.

2. Thexe mast be directory pages to
cutput.

3. ZEither the DSCB integrity bit or the
PCD integrity bit must be set.

=
»

. The DCP being closed must not repre-
sent the secondary copy of a duplexed
data set.

If all these conditions are met, a call
is made to MOVEPAGE to output the directo-
ry. During the testing for these condi-

140 Part IXI: Virtual Access Method {(VAM)

tions, a further error test is conducted.
If the data set does not prove to be
sequential, indexed sequential, or parti-
tioned, SYSER and ABEND are called. This
same error exit 1s taken if MOVEPAGE is not
successful.

Closing the last Open DCB: Following a
successful call to MOVEPAGE or if no call
is required, it is determined if this is
the last DCB cpen for the data set. For
nonshared data sets this is indicated by a
zero count of open DCBs in the JFCB. For
shared data sets this same count must be
zero and, also, the count of open DCBs for
all tasks must be zero. If one of these
conditions is met (that is, this is the
last open DCB for the data set) it may be
necessary to delete the data set or to free
unused space. If there are available
unused pages and the HOLD option has not
been specified, a call is made to RELEXPG
to release the pages. The parameter list
to RELEXPG includes the RESTBL external
page entries representing the unused pages.
For a shared data set the interlock words
must be removed from the RESTBL before the
parameter list can be built.

Following the call to RELEXPG or if no
release is performed, the DSCB integrity
bit is checked to see if the DSCBs must be
updated. If so, a call is made to WRITDSCB
to perform the update. After a successful
call to WRITDSCB or if the DSCBs were nct
updated, buffer space area may be freed as
described below.

Final Close Processing: In this case, the
closing of the last DCB for a data set, the
final close processing involves the release
of any buffer or overflow pages and the
release of directory or POD pages. These
releases are accomplished by calls to FREE-
MAIN. FREEMAIN is also called to release
any existing RESTBL pages. Lastly, the
RESTBI. pointer is cleared from the JFCR,
the DCB and DCB header are unchained, the
macro transfer list is cleared from the
DCB, and then a check of last close for a
DELVAM call is performed. If the Delete at
Close flag is set, a call is made to DELVAM
to delete the data set, its catalog entry,
and the associated JFCB. If DELVAM returns
an error code, SYSER and ABEND are called.

If the Delete flag is not set or delete
has been performed, the control will now
return to the caller.

Other Open DXBs: When other DCRBs are open
for the data set, either for this task or

for another task sharing the data set, the
data set cannot be deleted nor can unused

data set pages be released.

If the data set is partitioned and
linked to a member, the number of users

accessing the members is decremented. If
this number reaches zero, the member header
is deleted from the chain, the chain is
updated to account for the deletion, and
the deleted header space is added to the
list of available RESTBL space. Following
this, the DCB header is checked. If it is
chained, the header chain is updated to
account for the deletion of the DCB header.
If the header i3 not chained, the In Use
indicator is cleared. Following either of
these actions, the DCB address is removed
from the DCB header.

Next, the space occupied by the DCB
header is added to the chain of available
space in the RESTBL and the OSCB integrity
pit is tested. If this bat is set,
WRITDSCB is called to update the DSCBs on
the volume. After this the final close
processing is performed.

For data sets for which there are still
open DCBs, the final close processing is
abbreviated. Aany existing buffer pages or
overflow pages are released by calling
FREEMAIN and the macro transfer list is
cleared in the DCB. Lastly, for shared
data sets, DISCONNECT is called to discon-
nect the task from the shared RESTBL.
After this or if the data set was not
shared, control is returned to the caller.

For entry at CZCOB2: This entry is from
the CLOSE command, and is provided to per-
form cleanup of virtual memory associated
with a data set and occurs when an unavail-
abie (already unlcaded or errcneous) DCB
cannot itself be closed. The address of
the DCB header is pointed to in register 1
on entering CLOSEVAM. C2ZCOB2 decrements
the TDTOPN count and normal processing fol-
lows -- but at no time will a DCB be
pointed to, and no attempt will be made to
perform a STOW, output buffers or direc-
tories, or rewrite DSCBs.

DUPCLOSE Routine (CZCEZ)

The function of DUPCLOSE is to close the
DCBs associated with a duplexed data set by
means of a call to Close Common. In addi-
tion, DUPCLOSE unlinks the RESTBLs for the
data sets and, for the last DCB open for
the data set, unlinks the TDTs and clears
the duplicate copy indicator. (See Chart

MF.)
Attributes: Privileged, fetch protected,
closed, read only, reentrant, residing in

public virtuai storage.

Entry Point: CZCEZ1l -- Entered by means of
a type-1 or a type-2 linkage generated by
the expansion of the DUPCLOSE macro
instruction.

Input: On entry, register one contains the
address of a two word parameter list:

word 1 -- Address of the primary DCB.

Wword 2 —-- Address of the secondary DCB.

Module:: Called:

Close “ommon (CZCLB) -- A single call is
made to close the DCBs and to return the
virtual storage they occupied.

SYSER (CEAIS) -- Called by means of the
SYSER SVC when one of the DCBs indicates
a [CSORG other than VAM.

ABEND (CZACP) -- Called to issue a messaye
and terminate the task.

Exits:
Normal -- Return to the calling routine.

Error -- Termination via ABEND macro
instruction. SYSER before ABEND if one
of the data sets is not of VAM
organization.

Operation: DUPCLOSE saves the calling rou-
tine's registers and establishes base regi-
sters for its CSECT and PSECT. It then
retrieves the address of the DCBs, uses
them to establish base registers for opera-
tions on the DCBs, and places them in the
parameter list it will pass to Close
Common .

DUPOPEN next tests both DCBs to ensure
that the data set organization for each is
vaM. 1f either DCB fails this test, a
minor SYSER is declared, the address of an
error message is loaded, and ABEND is
called. If both DCBs pass the test, the
RESTBLs for both data sets are found and
base registers are set up. The addresses
of bocth JFCBs are saved for later reference
and Close Common is called with the address
of the parameter list in register 1.

The close operation iS5 assumed to be
successful so no error test is made on
return. DUPCLOSE begins searching for the
JFCB associated with the primary DCB. It
begins its search at the last JFCB and
works its way backward through the TDT. &s
each JFCB is checked, its DD name 1s com-
pared with the DD name in the DCB until 2
match is found. If no match is found the
procedure is repeated for the secondary
JFCR. When the primary JFCB is found, a
test is made to see if any other DCBs are
opened for the data set. 1If none is, tne
duplicate JFCB pointer and the duplicate
copy indicator are cleared. Following this
or if another DCB is open, the TDT is
searched again looking for the secondary
DCB. The search is conducted in the same
manner, the same tests are performed, and

Section 4: Open and Close Proces:cing 141

the same “rocessing occurs as in the case
of the primary JFCH.

When both JFCBs have been processed as

above, DUPCLOSE returns to the calling
routine.

VEAM Close Routine {CZCOQ)

VSAM Close is called by CLOSEVAM (CZCoB)
Stow (CZCOK) to perform terminal pro-
essing which is unigue to VSAM data sets.

See Chart MG.)

-0
i
0 Lo

Entyxy Point: <CICOQ1 -- Entry is by type-1

linkage.

Input: Register 1 contains the address of

the DCH.

Modules Called:
FLUSHBUF (CZCOV1) -- Output contents of
buffer pages, if necessary.

el

UT {CZC0S2) -- Complete the processing of

the preceding locate mode PUT.

3]

xits: Normal return to calling program.

Operation: Initialization and general
register storage is executed in conformance
with linkage conventions. Base registers
are declared for VSAM Close BSECT and
CSECT, DCB, DCB header and RESTBL.

VEAM Close is called to do terminal pro-
cessing of a data set with respect to a
DCB. The last operation field of the DCB
{DCBICF? is tested to determine if work
remains to be done due to an outstanding
locate mode PUT. If the last operation was
a locate mode PUT, the user wWas given a
pointer to. the output buffer where the next
logical record is placed. It is assumed by
the sequential access method that if a
locate mode PUT is calied, the user has
actually placed a record in the space pre-
sented. The outstanding PUT must be ter~
minated to include the last logical recora
in the data set. A call to a secondary en-
try point {(CZCOS2) is done to accomplish
that function.

The last Operation and Hold Last Buffer
flags {(DCBLOF and DCBHLB)} are cleared.

The last reco-d of a data set has logic-
21lly been included in the data set, that
is, data set pointers updated. That record
must now e physically included in the data
set. If +he last record has not been writ-
ten from virtual storage, a call to
FLUSHBUF (CICOV) is made. An exception to
this is undefined format records. Since
they occur in page increments, they are
written out at pUT time, and VSAM Close
need not call FLUSHBUF.

142 Part II: Virtual Access Method (vam}

If any discrepancies exist, final house-
keeping is performed to adjust the recorded
data set length to the physical data set
length.

Control is returned to the caller by the
RETURN macro.

VISAM Close Rouvtine (CZCQA)

VISAM Close is called by Close and Stow
to terminate processing of a data set
(member) and output any existing directory
pages. (See Chart MH.)

Entry Point: CzcQoAl -- Entry by type-1
linkage (privileged to privileged).

Input: Register 1 contains the address of
the DCB to be closed.

Modules Called:
PUT (CZCPA2) -~ Complete previous PUT if
still active.

MOVEPAGE (CZCOC1l) -- Output directory
page(s).

Exits: Normal return is made to the caller
via the RETURN macro.

Operation: Initialization and general
register storage is executed in conformance
with linkage conventions. Base registers
are declared for VISAM Close CSECT and
PSECT, DCB, DCB header, and RESTBL.

If the last operation was a PUT, PUT is
entered at the secondary entry point to
complete any function left cutstanding from
the previous pur.

If index sequential directories exist,
and if the ISpD Integrity flag in the RESTBL
is set, MOVEPAGE (CZCOC) is called to out-
put them.

Control is returned to the caller by the
RETURN macro.

VAM ABEND Interlock Release Routine (CZCQ0)

VAM ABEND Interlock Release is used by
VAM to release interlocks that have been
set within a task in which ABEND has been
invoked. (See Chart MI.)

Entry Points:
CZ2CQQ1 -~ To release only RESTBL interlocks
that may be set. Via type-1 linkage.

C2CQQ2 ~- To release all interlocks that
may be set. Via type-1 linkage.

Input: Register 1 contains the address of
a half word field containing the ID of the
task involving ABEND.

pmodules Called:

Search SDST (CZCLE) -- To update
data set or member entries in
data set table (SDST).

or delete
the shared

Interliock (CZCOtD) To set read
interlock on a shared data

or write
set entry.

Release Interlock
read or write
set entry.

{C2C01) ~-- To release
interlock on a shared data

Exits:

Normal -- The calling rrogram receives con-
trol by use of the RETURN macro, with
the T option set and no special return
code.

Error -- May ABEND if unable to release the
SDST interlocks.

Gperation: The normal release process con-
sists of analyzing the DCBHEADER interlock
summaries (Figure 24) one at a time, and
releasing the appropriate interlocks by
calling the existent Search SDST, Inter-
lock, and Release Interlock routines. The
DCBHEADER interlock summaries are updated
to indicate such release.

Examining DCBHEADERS: VAM ABEND Interliock
Release examines the task ID in each DCB
neader to determine if the data set is used
by the task that has invoked ABEND. On
finding a DCB header pertinent to the task,
the interlock summary is checked and per-
tinent interlocks are released as stated
below. 1f the comparison between the task
ID in the DCB header and that invoking
ABEND is unequal, a link is made to the

chain of DCB headers is exhausted (that 1is,
the pointer to the next DCB header is
zero), the link to the next JFCB is made
and the process repeated until all JFCHs
have been examined (that is, the polnter to
the next JFCB 1s zero).

keleasing the Interiocks: The interlock
summary in the DCB heaaer is continuously
updated as interliocks are set and reset by
Interlock and Release Interlock, with the
exception of the shared page table number
interlock. The DCBH header will reflect the
condition of this interlock and it will be
released as reqguired. The DHDINT field in
the DCP header contains the interlock sum-
mary shown in Figure 2U4.

If an interlock is recorded in the DCB
header interlock summary as being imposed
on the SDST control, all other interlocks
within the SDST are released before releas-
ing the SDST control interlock. If no
interiock on SDST control byte 1s recorded
in the interlock summary, and if such a
lock is found to be in effect, either the
interlock was set by the task which invoked
ABEND and is recorded in a DCB header
interlock summary that has not yet been
examined, or the interlock was set by
another task. Since it is not known at a
given moment which case exists, the first
case is assumed, and the DCB headers are
scanned for that particular lock. On
release of the SDST control lock all cther
interlocks are released. While the scan is
being executed, the SDST control byte is
repeatedly checked for release. If release
occurs {the second case is indicated) the

next DCBAEADER within the chain, and the scan is discontinued and the general
comparison on task ID repeated. When the release process is executed.
Fullword
?
DHDINT
Bit O i "~
t bitis 1, Write interlack is imposed if bit is 1, corresponding interfock is set
If bit is 0, Read interlock is imposed if bit is 0, irterlock is not set
T N RN
o - T S N Y
— ™~
T 1 1 1 T] LT Toos Daesradl
Not | Not |Externl|Member| POD \RESTBL% SDST | Not | Not |SDST | Mot | Poge !Nﬁembeyg POD | RESTBL | Doto
Used | Used |Page |Header | | Eotey | Used ! Used {Member| Used | \Header | i Set
i Entry ! | % t (Entry } | | ! Fn‘fry‘
| | i i | i i 1 Within
! ! i : | ! i | isosx
f ! 1 | i %
‘ I [| , ! ; ‘
? | | E | i } 1 | z x |
Bit 16 17 18 19 20 21 22 23 T 24 25 26 27 28 29 30 31
DHDINT DHDINT +1
Figure 24. DCBHEADER Interlock Summary

Section 4: Open and Close Processing 143

SFCTIUN 5:

VIKTUAL SEQUENTIAL ACCESS METHOD (VSAM)Y

Sexjuential organization is a subfunction

of the VAM user macro instructions. The
principal advantage of VSAM 1s that the
maximum record sSize 15 one Segment (256
pages or 1,048,576 bytes).

The following contribute to VSAM:

User Coded Macro Instructions

DCB

OPEN, CLOSE

SETL

PUTX

Control Blocks

RESTBL
J5AM Routines

OPENSEQ

CILOSESEQ

GET

SETL

PUTH

FIDGHRUF

Supply parameters to define

data =et structure. Also
provide work space for the
access method modules.

Activate/deactivate access
to a data set.

Request a record.

Specify generation of a
record.

Specify access to a parti-
cular record or portion of
the data set.

Update a record in place.

Relative external storage
correspondence table.

Access dependent initiali-
zation to begin processing
of a V5AM data set.

Terminate sequential
processing.

Sequer.tial access to a
recors of a VSAM data set.

Sequential generation of a
record and truncation of a
data set.

Specify the record within
the data set at which
access 1s required.

Update a record without
deletion of subsequent
records as with PUT.

Process the page buffer
contents.

Record formats wit! the VSAM may be
tixed (F), variable ('), or undefined (U)

(see Figure 25).
page boundaries,

144 Part II:

The::e records may span
but ~ormat-U records must

Virtua . Access Method (VAM)

begin and end on page boundaries. To con-
trel the proce maing ot tormat -V oreconds, o
length contrel ticeld 1o placed o the tirast
tour bytes of the record by fhe user. The
acceuss method gencrates the contral data in
the tirst byte and also place a copy of the
control field at the end of the record.

The pair of control fields (8 bytes) will
never span a page boundary.

A description of DCB working storage

used by VSAM routines is provided in Table
37.

ROUTINES IN VSAM

VSAM Get Routine (CZCOR)

VSAM Get is called, by expansion of the
GET macro instruction, to obtain a data
record from a VSAM data set or member. The
record obtained may be explicitly identi-
fied by a SETL or may simply be the record
which sequentially follows that record
accessed by the preceding PUTX or GET.

(See Chart NA.}

Table 37. Description of DCB Working
Storage Used by VSAM Routines

o ——— B i 4 - - |
| Symbol | Data | Description |
e — - T —— 1
| DCBNPO | N | Number of pages to |
| { joutput |
f I | |
| DCBFPO |} N |First page to output i
! l | !
| DCBBPU | N | Number of buffer pages |
| | |in use i
[] | I
| DCBHLB { X |Hold Last Buffer flag |
] | ! 1
| DCBLOF f X |Last Operation flag |
I | I !
| DCBLO1 | |X*03" SETL |
! | | |
| DCBLO02 | |X*'0C* PUTX |
| | [!
| DCBLO3 | [X'CC* GET - move i
|] I 1
| DCBLOY | |X*'C3' GET - locate i
I | |
| DCBLOS | {X*'3C* PUT - move |
I | I a
| DCBLO®6 | |X*33° PUT - locate |
! | | |
| DCBPRL | N,X |Previous record length |
| | | !
| DCBBP { A |Current buffer position|
[i Lo — — 4

The USER
specifies . . .

VSAM organizes
data set records like this . . .

s =

s 2

RECFM = F

Page —- Poge

bt e e POAGE s e By e PAGE et

{
T
!
f
|
i

b e e e ed

I
i
|
|
1

NGRSV

| | |
L———’ Record 1 ~—-—+—-—- Record 2 ————smta—o Record 3—- »L* —— Record 4 ~— —w

In this example, LRECL = less than 4096.

et Page— =l Poge et Page e fage 4
| L ! T ¢ 7
RECFM = U : ! } I
1
l ! ! [
1 ! | i
i 1 H]
L——————-«m—— — - Record 1 —— — ¢ e RECOTE 2 e e ———»«
in this example, LRECL - 8,192
F Page ot Page et [T — A - 20—
i 9 i | 9 9 |
RECFM V T E T T
i | i | | {
LRECL = _ Record | ujt2 i Record 2 e21e3 Record 3 23104 % Record 4 % 24145
‘ | | |
i 1 1
and supplies a 4-byte field {\
preceding each record in which i
he places the record length.
Record Tratling
length -
{binary) Control .Recorc
. { L iength
The user supplies leading Byte 0 1-3 Field (hinary)
record length descriptor, ’

VSAM adds trailing record
length descriptor, which
includes this control field.

T

8it O 1-3 i 4-7

Figure 25. VSAM Data Record and Page Formats

Section 5:

L— Reserved for other use.

Alignment: the number of bytes left
at the end of o page (1 to 7} if it is
necessary to skip to next page (if both
23 and €4 would not fit on some poge
following record 3).

L This flog bit is set to 1 if record 3 is complete on a single poge.

virtual Sequential Access Method (VSAM) Lg

5

Attrisbates: Read-only, reentrant, public,
nonprivileged, system.
Enryy Point: CZCORlI -- Get is called by

type-1 linkage.

Input: Parameters are passed in general
registers as follows:

Register 0 -- If move mode, address cf the
users area.
Register 1 -~ Address of the DCB.
Within the DCB, the macro code field
{CCBMCD) has been set to indicate move or
locate mode.

Modules Called:
MOVEPAGE (CZCOC1) -- pPerform page input.

FLUSHBUF (CZCOV1) -- Purge buffer of data
remaining in the buffer since the last

Operation.
Exits:
Normai -- Exit is made to the user via the

RETURN macro.

Error -- ABEND is called under the folilow-
ing conditions:

®* The DCB header does not point back to
the DCB.

® Record length zero.
¢ Record length longer than maximum.
* End of data set and missing EODAD.

Format U record not multiple of a page
in length.

¢ User area not same protection class as
the DCB.

Operation: Initialization and general
register storage is executed in conformance
with linkage conventions. Base registers
are declared for VSAM Get CSECT, DCB, SAVE
area, B header, RESTBL, and ISA.

VSAM Get is a "fence sitter® and has no
PSECT. It is always called by type-1 1link-
age and assumes the same privilege as the
Caiier. The VSAM Get save area is obtained
dynamicaily by Open Cormon on a DOB basis.
Get has to access the interruption storage
area (IS4} to determine its current privi-
iege state before calling privileged rou-
tines {(MOVEPAGE, ABEND and FLUSHBUF}. Get
will execute type-1 or type-2 CALLs depend-
ing on its privilege state.

Tne DCB pointer in the DCB header is
tested to insure that it points to the DCB

146 Part II: Virtual Access Method (vaMm)

being processed. 1f it does not ABEND 'is

called.

The last operation field (DCBLOF) is
tested to see if the last operation was a
PUT. 1If tne last operation was a PUT, it
means that the data set is positioned at
end of data and the current Get would cause
an End of Data condition. The End of Data
exit in the DCB is taken if the user supp-
lied one; if not ABEND is called.

If the last operation was a Get, a call
is made to FLUSHBUF (C2ZCOV) to clear the
I/0 buffer before reading in the next
record.

The following is common to all other
previous operation conditions (SETL, PUTX,
Get-move mode Get-locate mode where not
more than one buffer page was retained) and
to the preceding: If the current record
position (page and byte) is beyond the end
of data defined in the RESTBL (or member)
header, call the user's EODAD routine as
described above for PpuT.

The retrieval address of the current
record and its successor are generated.
Following this one of three procedures is
executed depending on the record format.

Undefined Record Format (U): ABEND will be
executed if the requested record is too
large, or if it would not end on a page
boundary. The user's EODAD routine will be
executed if the end of the record is beyond
the end of the data set. 1In this case
ABEND may be executed if no EODAD was
specified.

The number of pages to input is com-
puted. If in move mode and the users area
begins on a page boundary, MOVEPAGE
(CZCOC1) is called to input the record
directly into the user area. The last
operation is set to GET-move mode. The
current relative position is updated and a
return is made to the caller.

If in locate mode, or move mode where
the user area does not begin on a page
boundary, MOVEPAGE (CZCOC1) is called to
read the record into the buffer assigned to
the DCB. The number of pages in use is set
equal to the number of pages input, and the
Hold Last Buffer flag is set off. If in
locate mode, the buffer address is placed
in general register 1, the Last Operation
flag is set to GET-locate mode, and a
RETURN is made to the caller. If in move
mocde, the contents of the buffer are moved
to the user specified area and the Last
Operation flag is set to GET-move mode and
a return is made to the caller.

Fixed Format (F): A computation is made to
determine if the next record is completely
within the buffer. If (CZCOC1) 1is called
to input enough pages to complete the reco-
rd, starting at the page following the last
page in use. The remainder of oprocessing
of fixed format records 1is common to both
fixed and variable and is described below,
under "Fixed or Variable Format {(Common
pProcessing).”

variable Format (V): 1If the buffer is
empty, MOVEPAGE (CzCoC1l) is called to read
the next page of the data set into the
pbuffer. The number of buffer pages in use
is set to one.

The record length of the recoxd in the
buffer is checked to determine if the pre-
sent contents of the buffer cortain the
record. If not, MOVEPAGE (czcocl) is
called to read the additional pages into
+he buffer at a point following the last
page in use. The number of buffer pages is
incremented by the number of pages read.
The retrieval address of the current record
is generated.

Fixed or Variable Format (Common Proces-

sing): The record address of the following
address is generated. The Hold Last Buffer
flag is set on Or off depending on whether
the current record ends on a page boundary.

1f locate mode was requested, the
address of the record is placed into gener-
al register 1 and a return is made to the
caller. If in move mode, the current reco-
rd is moved to the user area. 1f more than
one page is in use in the buffer, or if the
Hold Last Buffer flag is off, FLUSHBUF
(CZCOV1) is called to purge the buffer area
of the unneeded data.

The Last Operation flag is set to GET-
move mode, the current record position is
updated and a return is made to the caller.

ySAM PUT Routine (CZCOS)

VSAM PUT is called by the user through
the DCB or by CLOSESEQ (CZC0oQ), or SETL
{(CZCOT) to concatenate a record onto the
data set and define a new end of data set.
when called by the user, the function may
pe to obtain the address of some buffer
space into which the user may construct a
record. Any subsequent operation on that
data set will result in a call to the
secondary entry of this module (CZCOS2) to
complete the operation. (See Chart NB.)

Attributes: Read-only,
nonprivileged, system.

reentrant, public,

Entry Points:
CZCOS1 -- Entered via type-1 linkage.
Normal entry point.

Section 5:

CZLCOS? -- Entered via type-1 linkage to
terminate an outstanding locate-mode
PUT.

CZC0S3 -- Entered via type-2 linkage to
permit privileged table storage. PUT
enters itself to "jump the fence",
become privileged, and update the
RESTBL.

Input:

For CZCOS1, register 0 contains the user
buffer area (move-mode reguest).
Register 1 contains the address of the
DCB.

For CZCOs2, register 1 contains the address
of the DCB.

For CZC0OS3 -- None.

Modules Called: Calls as follows:

VDMEP (CZCQOK1) -- Output a diagnostic mes-

sage and terminate the function without
terminating the task.

FLUSHBUF (CZCOV1) -- Purge data remaining
from a previous operation, from the
buffer.

Exits:

Normal -- Return to the calling routine.,

Error -- VDMEP is called under the follow-
ing conditions:

¢ User has READONLY access to data set.

e DCB specified by caller is not
addressed by DCB header.

s Record length greater than maximam
specified in DCB header (note that
+his error will not be detected until
the following operation is performed
when it is caused by a locate mode
PUT).

« Undefined (U) format record whose
length is not in page multiples.

e Variable format logical record length
is too small (less than 4 bytes).

operation: This module‘s operation can be
summarized as entry; initialization; com-
pleting processing of the previous opera-
tion; establishing the buffer position for
the current operation; if move mode,
transferring the data from the user's area
to the buffer area; and writing the data on
external storage if more than one buffer
page is left in use.

At entry CZCO0S1l, the entry indicator (g}
is set to zero; at entry CczZCcos2, Q 1is set
to one. Initialization and general regist-
er storage is executed in conformance with

Virtual Sequential Access Method (VSAM) 147

linkage conventions. pase registers are
deciared ftor the CSECT, DCB, save Jdrea, DCB
header, RESTBL and I15A.

VSAM PUT is a "fence sitter”, and has no
PSECT. It is always called by type-1 link-
age and assumes the same privilege as the
callier. The VSAM Put save area is obtained
dynamically by Open Common on a DCB basis.
V5aM PUT has to access the interruption
storage area {(ISA) to determine its current
privilege state before calling privileged
routines. It will execute type-1 or type-2
CALLs depending on its privilege state.

Last Operation Not PUT: Data may still
exist in the buffer and must be released.
if the last operation was a locate mode
GET, and more than one page is in use,
FLUSHBUF (C2ZCOV1) is called to release the
pages. 1f the last operation was not a
locate mode GET, FLUSHBUF is called if the
present position is not at end of data set,
and this is not the first PUT. Processing
continues at the point, below, "Last Opera-
tion PUT Locate Mode.*

Last Operation PUT Locate Mode: The record
iength is obtained from the DCB or from the
buffer if the buffer is format-v. If the
record length is greater than the maximum,
VDMEP is called.

Common Processing to Update Buffer Posi-
tion: 1If not format-V, the buffer position
is incremented by the record length from
the DCB.

If format-V, the current buffer position
i1s updated by the length indication field
in the record. A flag is set in the record
length control field to indicate that the
record 1S or is not complete within one
page. If the number of bytes on this page
and following the record is between zero
and 7, the control field will be placed on
the next page with a gap of between zero
and 7 bytes. This gap, the alignment
bytes, is accounted for in the record
length control fields at the beginning of
the record, and in the field between this
record and the following record. The con-
trol field is then placed following the
record and the buffexr position is updated
by &.

For either of the above, the Hold Last
Buffer flag is set on.

Common Processing to Qutput Data: The
number of buffer pages in use is computed,
pased on the size of tne current record
pius the number of bytes in the buffer pre-
cecing this record including those in the
first page on which it is stored. If the
low 12 bits of this number are zeros and
this is not a format-v record, the Hold
Last Buffer flag off is turned off.

148 Part II: Virtual Access Method (VAM)

Tne number of pages which the record
occupies is stored as the number of pages
to output and also as the number of buffer
pages in use. If the Hold Last Buffer flag
is off or, if on and more than 1 page is to
be output, FLUSHBUF (CZCOV1) is called to
empty the buffer. The end of data set
parameter in the RESTBL is incremerted by
the number of tytes in the record just
processed.

If the record is format-U the operation
is move, and SWITCH is off, the end of data
set value is moved from the RESTBL to the
DCB. 1If either the Q or X (move mode)
flags are on, the last operation is set to
PUT-move mode, and return is made to the
caller. This completes processing for the
preceding locate mode PUT operation and
also certain move mode PUT operations. The
processing of the current call is described
below.

Processing Current Record: If locate mode,

the last operation is set to PUT-locate
mode, the current buffer position is placed
into general register 1 and, if format-v,
the record length of the previous record is
placed in the buffer and general register 1
is incremented by 4. Then a return is made
to the caller.

If move mode, the X switch is set on.
If the record length exceeds the maximum,
VDMEP is called.

If records are not format-U or are
format-U but the user's area does not begin
on a page boundary, the record is moved to
the buffer and complete processing with the
same procedure described above at "Common
Processing to Update Buffer Position”
occurs. This also sets the SWITCH field to
on for format-U records.

If format-U and the user area is on a
page boundary, the Hold Last Buffer flag is
turned off, the current buffer position is
updated, FLUSHBUF is called to release the
pages, and processing is concluded as
described above, at "Common Processing to
Qutput Data."”

SETL Routine (CZCOT)

SETL is called by VsSaM Open (CzZcCOP),
Find (CZCOJ), and by the SETL macro using
the V-con and k-cons stored in the DCB to
specify access to a particular record
within the VSaM data set. (See Chart NC.)

Attributes: Read-only, reentrant, public,
nonprivileged, system.

Restrictions: Cannot use SETL B with unde-
fined (U) format records.

_____ C2COT1 -- This module is
called by type-1 linkage.

Input: The following parameters are
passed:

Register 0 -- The retrieval address field.
Register 1 -- Address of the ICB.

Retrieval address is specified only when
the type code is R. In addition, a type
code is preset in the macro field (DCBMCD)
to indicate:

B - Beginning of data set.
E -~ End of data set.

P - Previous record.

R - Retrieval address.

Modules Called:
MOVEPAGE (CZCOC1) -- Input a page into the
buffer associated with the DCB.

VSAM Put (CZCO0S2) —-- Complete preceding
locate mode PUT.

FLUSHBUF (CZCOV1) -- Purje buffer of
unstored data from preceding operation.

Exits:
Normal -- Return to the calling routine.
Error -- ABEND is called under the follow-

ing conditions:
s DCB header does not point to DCB.
s Invalid record format in DCB.

e Backspace request for undefined
record.

e Attempt to SETL outside limits of data
set, with no EODAD exit supplied.

e Request code not defined (not a SETL

type code).
Operation: Initialization and general

register storage is executed in conformance
with linkage standards. Base registers are
declared for the CSECT, save area, DCB, DCB
header, RESTBL and ISA.

SETL is a "fence sitter® and has no
PSECT. It is always called by type-1 link-
age and assumes the same privilege as the
caller. The SETL save area is obtained
dynamically by Open Common on a DCB basis.
SETL has to access the interruption storage
area (ISA) to determine its current privi-
lege state before calling privileged rou-
tines. SETL will execute type-1 or type-2
CALLs depending on its privilege state. If

Section 5:

the address of the DCB in the DCB header is
not equal to the DCB address passed in the
parameter list, or the record format field
in the DCB is unspecified, ABEND is used to
terminate the task.

1f the preceding operation was a locate
mode PUT, it will be completed by calling
VSAM PUT at entry point CZCOS2.

If the last operation was a locate mode
GET and if the Hold Last Buffer flag is on,
or more than one buffer page is in use,
FLUSHBUF (CZCOV1) is called to release the
buffer and, if necessary, return data to
external storage. Upon return from
FLUSHBUF, the current record pcsition will
be updated.

The last operation field is set to indi-
cate SETL and a series of tests is then
made to select the proper method of
generating a retrieval address in the DCB
(DCBLPA) .

s Backspace (P): If this is a format-U
data set, the task is terminated via
ABEND. For variable format records, if
the current position is at a page boun-
dary, and this is not the first page of
the data set, MOVEPAGE is called
{CZCOC1) to read the next page. Then
the length control field is obtained
for the preceding record and adjust it
by the alignment byte count. For fixed
format, the record length is subtracted
from the current retrieval address
(this is done separately on page number
and byte position). A negative result
causes an exit to the EODAD routine, if
one is supplied; otherwise the task is
abnormally ended.

e Beginning (B): The retrieval address

is set to zero.

s Retrieval address (R): If the retriev-
al address specified by the caller is
bpeyond the end of the data set, exit 1is
made to the EODAD routine if one is
supplied. If there is no EODAD routine
an ABEND is issued. If the address is
within limits that value is saved in
the DCB.

s End of Data Set (E): The end-of-data-
set field in the RESTBL (or member)
header is moved intc the retrieval
address field in the DCB.

retrieval address has been
indicated above, if any buffer
use and the page number of the
current page is not equal to that of the
retrieval address, the Hold Last Buffer
flag is reset and FLUSHBUF (CZCOV1) is
called to remove that data from the buffer.
If the retrieval address is not beyond the

Aftexr the
generated as
pages are in

Virtual Sequential Access Method (VSAM) 149

end of the data set, MOVEPAGE (CZCOCLl) is
called to read the first page of the speci-
fied record into the first page of the
buffer. The number of buffer pages in use
is set to 1.

The fields in the DCR which defire the
current record are then set up and a return
1s made to the caller.

PUTX Routine (CZCOU}

PUTX Rewrite a Logical Record is called
by a PUTX macro instruction in the user's
program to perform the rewriting of a log-
1cal record in a VSAM data set. Initially
PUTX checks the validity of the request,
and if satisfactory, the buffer page (or
pages) containing the recoxd is (are)
returned to the data set by linking to the
FLUSHBUF (CZCOV) routine. (See Chart ND.)

Attributes: Read-only, reentrant, non-
privileged, public, system.

Restrictions: The previous I/0 macro
instruction for this data set must be a
iocate mode GET. After manipulating the
data, the user may not change the size of
the logical record when it is inserted in
the buffer.

Entry Point: CZCOUl -- Entered via type-1
linkage.
Input: Register 1 contains the address of

the DCB.

Modules Called:) .
FLUSHBUF (CZCOV1) -~ Writes buffer page f{or
pages) to data set.

VDMEP {(CZCQK1l) -~ Terminates the function
and outputs message if user has read-
only access.

Exits:
Normal -- Return to the calling routine.
Erroxr -- ABEND is called under the follow-

ing conditions:

@ The DCB header in the RESTBL does not
point to the DCB indicated in the PUTX
macro instruction.

e The previous 1/0 operation for this
data set was not a locate-mode GET.

VDMEP is called if the read-only access
filag is on in the DCB header. flag is
on in the DCB header.

Operation: Initialization and general
register storage is executed in conformance
with linkage convention. Base registers
are declared for the CSECT, SAVE area, DCB,
DCB header, and ISA.

150 Part II: Virtual Access Method (VAM)

'PSECT.

PUTX is a "fence sitter™ and has no

It 15 always called by type-1 link-
age and assuwes the same privilege as the
caller. The PUTX save area is obtained
dyncmically by Open Common on a DCR basis.
PUTX accesses the interruption Storaye area
(ISA) to determine its current privilege
stat e before calling a privileged rcutine.
PUTX will execute type~1 or type-2 CALLs
dep:nding on its privilege state.

PUTX verifies that the DCB header in the
RES'TBL points to the same DCB indicated in
general register 1, and that the last 1/0
operation stored in the DCB was a lccate
mode GET.

if either of the above are not satis-
fied, an exit to ABEND occurs.

VDMEP is called to terminate the func-
tion and issue a message if the read-only
access flag is on in the DCB header.

Processing continues by setting, in the
BCB, the number of output pages to be
rewritten equal to the number of buffer
pages in use; the number of the first out-
put page equal to the first buffer page;
the indication in the Last Operation flag
(DCBLOF) to PUTX.

If there is more than one buffer page to
be rewritten, or if a hold does not exist
on a single buffer page, FLUSHEUF is called
to write out the necessary pages. On
return from FLUSHBUF, processing is con-
cluded by updating the current position
pointers. If one buffer page is to be
rewritten, and a hold exists for this page,
FLUSHBUF is bypassed.

Processing concludes by updating the
current relative position pointers to
reflect the record just processed. This
includes the page number pointer, the byte
position pointer, and the buffer position
pointer. PUTX then issues a normal return.

FLUSHBUF Routine (CZC0OV)

FLOSHBUF is called by VSAM Get {CZCOR},
VSAM Put (CZICOS), SETL (CZCOT), or »PUTX
(CZCOU) to return data in the buffer to
external storage. (See Chart NE.)

Attributes: Read-only, reentrant, public,
privileged.
Entry Point: CZCOV1 -- Entered via type-1

or type-2 linkage.

Input: Register 1 contains the address of

the DCB.

Modules cCalled:
MOVEPAGE (CZCOCl1l) -- Force buffer contents
to be written on external storage.

Insert/Delete Page {(CZCOD1) -- Assign
external storage to data pages in the
buffer.

VDMEP (CZCQK1) -- Output a diagnostic mes-
sage and terminate the function (without
terminating the task).

Exits:
Normal —-- Return to the calling routine.
trror -- VDMEP is called under the follow-

ing conditions:

e Invalid return code from Insert/Delete
Page (CZCOD1).

s No external storage space available.
s Storage ration exceeded.
s No secondary storage space specified.

s« Attempt to expand RESTBL for shared
data set.

+« Maximum data set or member size
exceeded.

s« Insertion beyond end of data set.
e« Deletion beyond end of data set.

Operation: FLUSHBUF stores general regis-
ters in conformance with linkage conven-
tions and establishes base registers for
the DCB, DCB header, and RESTBL or member
header.

If the number of pages to output is non-
zero, and greater than the number checked
out, Insert/Delete Page (czcopl) is called
to assign enough pages to complete the
request. The insertion is made at the page
following the last page checked out. The
number of pages checked out is increased by
the number inserted. Subsequent processing

Section 5:

depends on tests made of the Hold Last
Buffer flag (HLB), number of pages to out-
put (NPO), and buffer pages in use (BPU),
and affects the number of pages checked out
as illustrated in Table 38.

After the operation indicated for cases
1, 2, and 3, in Table 38 are performed, 1if
no pages are checked out, the current posi-
tion is set to indicate the beginning of
the buffer, the number of buffer pages in
use is reset to zero, and an exit is made
to the caller. If pages are checked out
and the Hold Last Buffer flag is off, all
buffer pages checked out will be released.

The number of pages is reduced by the
number of pages that has been checked out.
At this time if a page is still checked
out, it is moved to the beginning of the
puffer area and addresses and counters in
the DCB are adjusted to indicate that the
current record is in the first buffer page
and that one page is in use. This routine
then returns to the caller.

Table 38. FLUSHBUF Decisions to Control
puffer Allocations
[Sasiinsiada e B it Sutaiet Se ittt A b Suthntatieshhe bl
| i { \ | Resulting i
joHLE b1 pommym g1
{ Flag [NPO{BPU] Action | NPO|BPU | PCO|
B B VIt A S
| (1) OFF{ |call MOVEPAGE (czcocl) to | C | ¢
| joutput all pages in the |
i | request
|
(2) oN 1 C
i .

output all pages except the
jlast, Move last puffer
{page to tone first buffer

|
i
¢
}
|
|
1| 1 |same as (1)
| :
!
{
;
§ {page and KETURN.

-
P o e o o e e e i i e
b

|
|
|
!
i
|
1 {call MOVEPAGE (CICOCl) to { 0
! !
{
|
|
4

Virtual Sequential Access Method (VSAM) = 151

SECTION 6:

VIRTUAL INDEXED SEQUENTIAL ACCESS METHOD (VISAM)

VisAM OVERVIEW

VIEAM 1s designed to give the user
sequential or nonsequential access to a
record within the data {member) by search-

ing for the user specified key.

s field located at a uniform position

within each record of a data set.

The fol-

lowing contribute to VISAM:

User Coded Macros

DB

READ
WRITE

ESETL

RELEX

DELREC

GET

PUT

Supply parameter to define data
set structure.

Request access or specify
creation of records within VISAM
data set. Also generates a DECB
(parameter list).

Request location of a specified
record.

Specify release of a record that
was located.

Specify release exclusive control
of a page.

Specify deletion of a VISAM data
record.

Request a record.

Specify generation of a record.

Note: Records must be generated
in sequence when using this
HBaCro.

Control Blocks

DCB

DECB

Tables

Data control block -- Extended
index sequential working storage.

Data event control block used to
control a READ or WRITE

operation.

Relative external storage corres-
pondence table.

Partitioned organization directo-
ry {if partitioned).

39 and 40 show fields of the DCB

and DECB control blocks used by VISAM

rout ines.,

General VISAM Routines

VISAM
Put

VISAM
Get

152 Part

Sequentially generate or truncate
records of a VISAM data set.

Sequentially obtain records of a

VISAM data set.

II: Virtual Access Metnod (VAM)

The key is

Table 39

r
|Symbol]

| DCBPCC |

|
I
DCBOPC

|
|
|
DCBCL |
!
i

2
o)
(]
9]

|
L
|
|

|

[

i

|
CBIOS|
|

]

|

{

|

|

BCRL|
BCRS{
CBRES%
BPLM%

|

g 8 %

g

BOLM|

7
=

' 288383338 38 8 8%

SETL

ESETL
RELEX

READ
WRITE

DELREC

- Dbescription of DCB Working
Storage Used by VISAM Routines

Cata/ Description |

T 3

N ,Data page call counter

]
{

N jOverflow page counter

A Current VISAM locator

position relative to page

X,A |Contents of current locator

A —

1

|X*0000°
| on-page
]

through X'OFFF*

i

{x*1000°

joff-page

i
X jInput, Output switch

]
X |Page type
{

through X*'FFFF*

|
|
{
{
i
|
i
|
|
i
|
i
|
|
|
|
|
]
i
{X*FF' overflow page |
i
|
|
i
|
|
|
|
|
|
i
|
|
|
|
|
|
|
4

{X'00' data page

N ECurrent record length

X ;Current record switch

X ;Read exclusive switch

X §PUT locate mode only

X gPUT move mode only

X iOutstandinq locate mode GET

X gAsynchronous switch

a }Record key area for previous
{record

Search VISAM data set for a reco-
rd. Set current key location of
a VISAM data set record.

Release a page.

Nonsequential generation or
retrieval of a VISAM data set.

Remove a record from a VISAM data
set.

add Directory

Entry Add directory entry. Update
VISAM key directory.

GETPAGE intertaces with VAM General Ser-
vices to control page 170.

VISAM open and close data et (access

Open dependent).

VISAM

Close

VISAM Page Formats

The following types of page constitute a
VISAM data set (member). (Also see Table
41.)

Data and overflow pages consist of data
records and locators. The data records are
placed on a page starting at the top (low-
est numbered bytes) and are added towards
the bottom (increasing byte locations).
Locators, on the other hand, begin at the
end of the page and extend toward beginning
(highest numbered bytes to lowest).

The locators are a series of 2-byte
fields which, when examined in sequence,
give the location of records in ascending
sequence by key, regardless of arrangement
of records on that page or any number of
overflow pages. There are 2 types of
locators:

e Onpage locators whose values range from
X'000A' to X'OFF8' and specify the
starting byte of the corresponding
record. The values X'000' through
X*009*' and X'0FF9' through X'OFFF' are
unattainable.

s Offpage locators whose values range
from X'1000° to X*'FFFF'. The first
byte of an offpage locator specifies
the page number of the overflow page
incremented by 16, on which the data
record may be found. The second byte
specifies the relative position of a
locator on the overflow page which will
in turn specify the starting byte loca-
tion of the proper record.

Keys on directory pages which are write-
protected from the user, are automatically
placed there as each, except the first,
data page is generated.

The lowest key associated with a data
page is the one which appears in the direc-
tory position corresponding to that page.
If a record is added to a pag2, and this
record has a lower key than any other key
associated with that data page, the direc~
tory is updated to reflect th2 new value.
An inserted record on a page may cause
jocators to be displaced to subsequent
pages -- this case also causes the directo-
ry to be updated.

Section 6: Virtual

Indexed Sequential Access Method (VISAM)

Table 40. Fields and Codes of the DECB
Referenced by VISAM Routines
(CHADER)

g 2 Subaiaied subsiababaibabebusiadhi St S hunnaa §

{Symbol |Datal Description |

------------- e e e e]

b +
|DECECR | ¥
i

joperation completion code.

|
{X*00" ReadsHWrite code.

las operation modifier.

|

|

| DECECO} }
! i f
{DECTYP { X [Operation Type Code. {
| | !
| DECTYL] X |(First byte of operation field defined as: |
| { i {
{ i i Code Operation {
| i {Internpal External {
| DEC4O | } X'40° KR Write replace by re- |
1 { ! trieval address. {
| i |
i DECU43 | oXTu3 KS Write replace by key. {
i | |
| DECHUu poxtug’ KT Write new key. H
i | i
{ DECUB | x'ug’ XY Read by key. i
| t |
{ DECu4S P X*49* XZ Read by retrieval i
i | address. i
| i 1
| DECHA] oXTuAr KX Exclusive read by key. |
{ !
| DECTY 2 X |Second byte of operation field is defined |
| |
i

|

!

H

;

|

!

|

|

Fi

i
|
|
i
f
]
|
!
|
|
I !
{
1
|
1
|
t
|
|
|
|
!

{ DECTIM %A'“O' Character ®S® appeared in the area
| {field of the macro iustruction.

lDECLEN N §Data area length.

iDECDCB A §Location of DCB.

quCKAD ! A |Location of the key or retrieval address.

¥ S —

Cable 41.

-

Organization of a VISAM Data Set

T -
{Max. |
|

Description

:
T

255|Consists of the lowest key
|from each data page after the|
{first. Appears in data sets |
| (members) consisting of morxe |
{than 1 data page.

Directory
(D)

T

s b s o

!
|
|
|
|
1
|

|
240jContains data records and
|locators when there is not

|
|
|
i
{
i
Overflow {
|
i |sufficient space on the data
|
i
|
i
|
i
A

(o)

|page with which its key is
|associated.

|

65,000|{Contains data records and
|sequentially orgsnized
|locators.
A

Data

o e s s s s o e SR s S

|
!
i
|
|
!
|
|
i

In order to reduce paging on VISAM data
sets with large directories, a super inde-
xed sequential directory (SISD) is created
when the number of directory pages exceeds
2 and a SETL by KEY is pexformed. The key
fields in the SISD consist of the first
whole key on a directory page, and the
address of that key relative to the begin-
ning of the directory page on which it
resides (byte 0 = directory page number;
byte 1 = key offset within page). The for-
mat for the SISD is shown in Table 42.

153

Table §2. VISAM Page Foxrmats ~- Super Table 43. VISAM Page Formats -- Data or
Indexed Seguential Directory Cverflow
's . s b 1 T T B 2 hi
i Bytes |[Symbol | contents i | Bytes | Sympol| Contents |
e e T oo 1
10-1 |PAGNUM |No. SISD pages. { {0-1 { PAGNUM|Page number (starts
{ i i | | | |from zero) |
j2-3 | VMSPACE|No. VM pages occupied by | | | |
i i ithe directory. | j2-3 |ENDDAT|End of data relative to|
i i | i { ! |PTR to the beginning of|
j4-5 JENDSISD|End of SISD directory | | { unused spaces |
| i jrelative to the beginning| ! i | |
H i jof the last SISD] ju-5 [DATSPA|Data space. Total
i | {directory page. | | | | number of bytes i
H |] | | { |containing data records|
16-7 |ENDDIR }End of ISD directory { | i | |
i i lrelative to beginning of | |16-7 |EUDDIR{End of space accounting}|
} | l{last ISD directory page. { } | jarea (bytes 0-9) in |
§ | i | } i |this page value is |
{8-9 } {X*0000° i i { |X*0009° i
i ! ! | ! | ! |
{10-4095) |Keys and ISD relative i i8-9 {RECSPA|Recoverable space. |
| | jaddresses. Note that i i] {Number of bytes deleted|
i i |keys and its address may | i i |from the data area
| | Ispan pages. P i | |
bl -t —— -4 | L0-ENDDAT | |Data records and |
!Wwhen space is allocated for the SISD and | | | jrecoverable space
juntil it is updated, bytes 4-7 will] | i | |
jcontain X°FFFFFFFF". { | (ENDDAT+1) | jUnused space |
L —— —— — 4 jto (EO0S-1)} { |
|] | |
| EOS-4093 | |locators (halfworad }
| i j each) |
A READ or SETL by key will cause the | | | |
following: j4094-4095 |EOS |End of available space |
| | jrelative to start of |
¢ Search directory for the laxgest key | { | page. Points to start |
which is smaller than or equal to the i | jof locators |
one supplied by the user. L 1 4 - -t
Access the indicated data page.
Table 44. VISAM Page Formats -- Directory
s Using the locators on that page, search r v T 1
for the desired record. Note that this | Bytes |[Symbol] Contents !
may cause overflow records to be read. t - 4 + e 4
{0-1 | PAGNUM|Total number of directory |
The relationship between locators and | | | pages (starts from one). |
records, data pages and overflow pages is] | | |
depicted in Figure 26. This diagram illus- }12-3 | DIRPG |Number of pages in i
trates variable length records, overflow | | jdirectory, used for
records, available space and recoverable i | |maintenance of the virtual|
space. To summarize, the sequence of reco- |] |memory length of the |
rds is determined not by their sequence on | | |directory buffer after the|
a page, but by the crder cf the locators] | {directory is read into thej
which address the records. | | jbuffer. |
| | | |
The formats of data and overflow pages |4-5 1 }X*0000" |
are shown in Table 43. The format of di- | | | |
rectory pages is shown in Table 44. j6-7 |ENDDIR| 2nd of directory relative |
| } jto pointer to the |
| i | beginning of last data |
| | ipage. |
VISAM ROUTINES | | | |
|8-9 | {x*0000°* |
The VISAM processing for VISAM Put,] } | |
VISAM Get, SETL, READ/WRITE DELREC, GET- }10-4095]| | Reys. Note that keys may |
PAGE, and Add Directory Entry is described } | |span pages. |
i 4 e e e e e e o s e . e e . S v e i o o o S 4

below.

154 Part II: Virtual Access Method {(VAM)

Dats Paqe

Space Accounting £y 0

IR R SHS—

b J A ;
-k i l
Do [T T T T Jeof
g I
| I :
Overflow Poge l——— I
i 1 1 —
; Spoce Accounting £y %2 (K, R
? « T
A -
o
Ei X lg“T a3 AJ .
; i 3 4 —
| | : -
- % [T T-1-[
: i {] } I I
n J
Varioble F xed
[§ { K I 5] J Rl theg 987 are dota records r X I 3
€ thew £ oce length finlds
i D K D 1 87 3 :
i] i] X is recoverable space I ° I ‘ 1 i
{ £ I ° 1 K J A is ovoilable spoce [o I o
Koisbey Nt
ote:
D is deto There will be =

EQOS is end of spoce.

All records of o dota 1ei or member will be of o uniform

correspording fozator
on the dctc page,
as shown for recocd 7.

format with regord 1o key length, locotion of key variable
or fixed, if fixed, ofl wiil be of the some length.

Figure 26. VISAM Record Rrelationship

VISAM Put Routine (CZCPA)

VISAM Put is called by the user (through
the DCB) to concatenate a record in the
user's area onto the data set, or to pro-
vide the user with a buffer area into which
to construct a record. This module may
also be called by GET (CZCPB), GETPAGE
{(CZCPI), SETL (C2ZCPC), READ/WRITE/DELREC
{CZCPE), or VISAM Close (CIZIC{A) to complete
processing of a preceding locate mode PUT.
(See Chart OA.)

Attributes: Read-only, reenterable, privi-
legea, public.

kntry Points:
CZCPAl -- Normal entry from expansion of

PUT macro instruction. Entered via
type-1 linkage.

CZCPAR2 -- Entered to complete previous
locate-mode PUT.

Section €: Virtual

Input:

For CZCPAl, register O contains the address
of user area {(move-mode only). Register
1 contains the address of the DCB. The
macro code field of the DCB is set as
follows:

*o0C0” Locate mode.
*oo0L" Move mode.
'opos® Move mode complete.
For CZCPAZ2 -- Register 1 contains the

address of the DCB.

Modules Called:

GETPAGE (C2CP1) -- Perform input and/or
output of pages.

Ada Directory Entry (CZCPL1) -- Update the
index sequential directory.

Indexed Sequential Access method (V SANMY 155

VDMEP {CZCQK1) -- Terminate the function if
read-only access is indicated.

hormal -- Controi is passed back to the
caller by use of the RETURN macrc. Gen-
~ral register 1 will always contain the
address of the record.

eIYor -- Depending on the error condition,

i eXit may be made via ABEND or VDMER

nr, where provided, to a usex's SYNAD

routine.

ABEND occurs if:

s The record length exceeds 4000 bytes.

* The record length exceeds the maximum
stated in the DCE (when completing a
previous PUT).

* A SYNAD condition is encountered dur-
ing compietion of a final PUT.

VDOMER occurs if:
» The user has read-only access.
®* The DCB is not open for output.

¢ Two or more DCBs are copen with OUTPUT
specified for a nonshared data set.

® An unexpected return code is received
from GETPAGE.

Conditions for which the user may pro-
vide a SYNAD routine and the codes which
PUT will provide in DCBEX2 are:

¥eys equal (sequence error) Xx*ou’
Keys out of sequence roc’
Record length exceeds that spec- *ic*

ified in DCB

Operation: VISAM Put is a "fence sitter,®
and has no PSECT. It is always called by
type-1 linkage, and assumes the same privi-
lege as the caller. The Put save area is
obtained dynamically by Open Common on a
ICHB baris. Put has to access the Interrup~
tiocn storage area (ISA) to determine its
current privilege state before calling pri-
vileged routines. Put will execute type-1
or type-2 calls depending on its privilege
state.

PUT mormal Entry: Initialization and gen-
eral register storage is executed in con-
formance with linkage conventions. Base
registers are declared for the CSECT, DCB,
DCB header, RESTBL and data page. Initial-
iy, VDMEP is called via the VDMER macro
instruction if the user has read-only
access to the data set, if the data set is
not open for output, or if two or more DCBs

156 Part II: Virtual Access Method (VAM)

have been opened 101 the data set with the

OUTPUT option.

If the previous operation was a PUT, an
internal subroutine, "Complete Previous
PUT® is executed. Processing continues to
find space for a new record.

If any pages exist beyond this page, the
number is computed and GETPAGE (CZCPI3) is
called to delete them. 1If this is not the
first data page, Add Directory Entry
(CZCPL1) is called to update the directory.

If any records exist on this page beyond
the current position, they are deleted one
by one until the locator indicated by the
end-of-space field is reached. Each record
deleted causes the data space to be
increased by 2 bytes, and recoverable space
to be incremented by the length of the
record.

Find Space for New Record: The last opera-
tion switch is set to PUT. If a page is
assigned, and either more than %000 bytes
are available, or padding space, plus a
locator, plus record length is not greater
than data space, then a page is not
required. If a page is not assigned or
insufficient space exists, GETPAGE (CZCPI1)
is called to insert a new page. The cur-
rent locator address is set to 4092, the
new page switch is set on and the addresses
of the current locator and buffer position
are generated.

If move mode, the record is moved from
the user area to the data page after check-
ing that the record length exceeds neither
4000 (ABEND), nor the value stated in the
DCB as a maximum (SYNAD).

The current buffer address is placed in
register 1. If the operation being per-
formed is not a PUT-move mode complete,
control is returned to the caller. If the
operation was PUT-move mode complete, the
previous PUT is completed. Control then is
returned to the caller.

PUT Secondary Entry: Base registers are
established as above, SKIP is turned on and
the internal subroutine "Complete Previous
PUT" is executed. GETPAGE (CZCPI3) is
called to output the data page. A RETURN
is executed.

Complete Previous PUT: The key in the cur-
rent record is compared against the key of
the previous record. If out of sequence or
equal, SYNAD exits are executed. If this
is a new page, Add Directory Entry (CZCPL1)
is executed to update the directory. If
format-vV, ABEND is executed if user
exceeded the record length limit in the
DCB.

£nd data and data space are updated by
tne lenagth of the current record. End of
space is updated and & new locator is
inserted. The subroutine returns to the
portion of this module that called it.

VISAM Get Routine (CZICPB)

VISAM Get is a routine calied by the
user through the DCB to obtain access to
the next logical record. (See Chart OB.)

Attributes: Read-only, reenterable, publ-
ic, privileged.

Entry Point: CZCPB1 -- Expansion of the
GET macro generates linkage to this module.

Input: Parameters are passed as follows:
Register 0 -- Address of user area.
Register 1 -- Address of DCB.

The macro code in the DCB (DCBMCD} is
set to indicate move or locate mode.

X'0000' = Locate mode.

X*'0004" Move mode.

]

Modules Called:
PUT (CZCPA2) -- Complete outstanding PUT

operation.

GETPAGE (CZCPI2) -- Input next page of the
data set.

Exits:

Normal -~ General register 1 will contain

the address cf the record.

EODAD -- Position is at end of data set.
Error -- ABEND EODAD is unresolved.
operation: Initialization and general

register storage is executed in conformance
with linkage conventions. Base registers
are declared for DCB, GET save area, CSECT,
and ISA. Base registers for DCB header,
data page, and RESTBL are declared as
needed.

VISAM Get is a "fence sitter,”™ and has
no PSECT. It is always called by type-1
linkage and assumes the same privilege as
+he caller. The Get save area is obtained
dynamically by Open Common on a DCB basis.
GET has to access the interruption storage
area (ISA) to determine its current privi-
lege state before calling privileged rou-
tines. GET will execute type-1 or type-2
calls depending on its privileged state.

The DCB (DCBPLM) is tested to determine
if tne last operation was a PUT. The

secondary entry point ot PUT {CZCPAL) it
entered to terminate any outstanding PUTe.

Before getting the record, :1f the data
set is not shared and the data page in the
buffer is not the current data page, the
buffer data page is output via GETPAGE
prior to bringing the current page into the
buffer.

The Current Record switch in the DCB
(DCBCRS) is tested to see if the DCB is
currently positioned to the proper record.
If the Current Record switch is on, the
current locator is obtained. The locator
may be a data page locator or point to an
overflow page. If it is an overflow page
pointer the overflow page is obtained by &
call to GETPAGE (CZCPI). The next logical
record is located on the data page or the
overflow page. The record address, key
address, and retrieval address are set from
the found record.

If a move mode GET was requested, the
record is moved to the user supplied area.
Control is then returned to the caller by
the RETURN macro.

If the Current Record switch was not on,
the locator of the next logical record must
be obtained. If the current locator is not
at the end cof the locators on the current
page, the location of the locato: is
updated to the next logical recoxrd and pro-
cessing continues as if the Current Record
switch were on.

1f the current locator was the last one
on that page, the page number is incre-
mented and the next page obtained by cal-
ling GETPAGE (CZCPI). If the call to GET-
PAGE caused an end-of-file condition, the
user-supplied (in the DCB) EODAD exit is
taken, if it exists. If the user did not
provide an EODAD, VDMEP is called. For a
non-end of data condition, the locator
pointers are initialized and processing
continues as if the Current Data switch
were an.

SETL Routine (CZCPC)

SET LOCATION (SETL) is called by the
user or by READ/WRITE to locate a specifia
record within a VISAM data set or member.
(See Chart OC.)

Attributes: Read-only,
ic, privileged.

reenterable, publ-

Restrictions: May not SETL by retrieval
address for a shared data set.

Entry Points:

CZCPC1 -- Entered via type-1 linkage
through expansion of the SETL macro
instruction.

Section 6: Virtual Indexed Sequential Access Method (VISAM) 157

C2CPC2 ~- Entered via type-1 linkage from
other VISAM routines.

1

input:
For CZCPCl, register O contains the address

nf key or retrieval address. Register 1
caontains the address of the DCB. The
macyre code field of the DOB will be: set
to one of the following:

6T SETL operation to beginning.
‘08" By key.

*oct By retrieval address.

iu’ To previous.

‘i8* TO next.

*8O" To end.

For CZCPC2, register 1 contains the address
¢’ a two-word parameter list:

Woxd 1 -- Address of DCB.
Word 2 -- Address of key or retrieval
address.

The macro code field of the DCB has the
same permissible values as for entry point
CZCPC1.

Modules Called:
PUT (CZCPA2) -- Complete previous PUT.

GETPAGE (CZCPI2} -~ Read data or overflow
page without outputting old page.

Interlock {(CZCOH1) -- Lock RESTBL for
shared data set.

Release Interlock (CZCOI1) -- Unlock
RESTBL.

Exits:

Normal -- Return is to the calling program
via RETURN macro and with a completion
code in general register 15.

Erroxr --

SYNAD: Erroxr return to tne user is by
using SYNAD exit in the DCB for any of
the following conditions:

e Invaiid retrieval address.

ot

2
O

peration was SETL to next, and at end

v data set {(member).

o)

¢ Operation was SFTL to previous, and at
beginning of data set (member).

¢ Key not found.

158 Part II: Virtual Access Method (VAM)

ABEND is executed atter the tollowing
cases where continuation is not
meaningful:

e Invalid code in macro code fieid of
DCB.

e Artempted 5ETL by retrieval address
for shared data set.

VDMEP is called if:

e SYNAD address in DCB had not been
resolved.

Operation: Initialization and general
register storage is executed in conformance
with linkage conventions. Base registers
are declared for the SETL save area and
CSECT, DCB, DCB header, RESTBL, and data
page buffer.

SETL i8 a "fence sitter," and has no
PSECT. It is always called by type-1 link-
age and assumes the same privilege as the
caller. The SETL save area is obtained
dynamically by Open Common on a DCB basis.
SETL has to access the interruption storaqge
area (ISA) to determine its current privi-
lege state before calling privileged rou-
tines. SETL will execute type-1 or type-2
calls depending on its privilege state.

The RESTBL is interlocked for shared data
sets. The lock will be released prior to
any return.

If a PUT was in progress, it is com
pleted by caliing PUT (CZCPA2). For SETL
to next, the Current Record switch is
turned on and the page is read into the
buffer. The current locator is stepped
down by 2 bytes. If the current locator is
equal to end of space (E0S), the next page
must be read. The current locator is then
set to X'FFC' (4092). This process is
repeated until a data record is found.

For SETL to previous, the current loca-
tor is stepped up by 2. If this value
reaches X*‘FFPC* (4092) the previous page
must be obtained by calling GETPAGE
{CZCPI2}. The current locator is then set
to the value in POS. This process repeats
until a data record is found.

Set SETL to beginning, the first data
page is read in, the current locator is set
to X'FFC' (4092) and a procedure as in
"SETL to next™ is followed.

For each of the above, the locator is
examined; if necessary the specified over-
flow page will be read into the overflow
buffer, and the locator (on page or from
the overflow page) is used to set up the
retrieval address in the DCB.

For SETL by retrieval address, the spec-
1fied record is read in and the program
exits.

VDMEP (CZCOK1)

sage and terminate the function (but not
the task).

-~ Qutput a diagnostic mes-

For SETL by key, a binary search of the Exits:
directory is performed. If a directory is Normal —-- Return to the calling routine.
not present, the first page is assumed to
contain the specified record. When the Error --

required page is read in, a binary search
against the keys associated with that page 1.
is performed using tne locators found

there. Overflow pages may be read to per-

form this search. When the desired record

is found, the retrieval address is set as

above and the program exits to the caller.

Read/Write, DELREC Routine (CZCPE)

Read/Write is used for nonsequential
access to a VISAM data set by either key or
by retrieval address. DELREC is used to

delete a record by the same criteria. (See
Chart OD.)
2.
Attributes: Read-only, reenterable, publ-
ic, privileged.
Kestrictions: Cannot expand RESTBL for
shared data set. Shared data sets cannot
be read by retrieval address.
Entry Points:
CZCPEl1 -- Entered via type-1 or type-2
linkage through expansion of the READ or
WRITE macro instruction.
CZCPH1 -- Entered via type-1 or type-2
linkage through expansion of the DELREC 3.

macro instruction.

Input:

For CZCPEl, register 1 contains the address
of the DECB. The operation will be con-
trolled by specifications stored in the
DECB (Table 40).

Operation:
register storage is executed in conformance
with linkage conventions.
are declared for the CSECT and PSECT,

Return to the calling routine with a
return code of X'04*' in general
register 15, followed by « call to the
usexr SYNAD routine, under any of the
following conditions:

e READ,
found

WRITE, or REPLACE key not

s Equal keys found on a write new key
¢ Too many overflow pages

s Attempt tc EXPAND shared data set.
VDMEP is called if:

e No SYNAD address.

» Update with read-only access.

¢ Nonprivileged callers/data set
privileged.

s Input key does not match the key in
the record for a write operation.

e Unexpected return code from CZCPI.
ABEND is issued if the DCB header does
not point to the DCB, or if the record
length exceeds maximum.

Initialization and general

Base registers
DECB,

DCB, DCB header, RESTBL and data page

For CZCPH1l, register 1 contains the address
of the DCB.

buffer.

Upon entry to CZCPE1l or CZCPH1, the

Modules Called: SYNAD indicator in the DCB (DCBEX1) is set
PUT (C2CPA2) -- Complete previous PUT. to either READ/WRITE or DELREC. The RESTBL

is interlocked for shared data sets. The

SETL (CZCPC2) -- Locate proper record lock will be released prior to any return.

position. If the last operation was a PUT, a test is

made to see if the data set is shared. If

the previous PUT.

shared, PUT is called at CZCPA2 to complete

If the data set is not

shared, and the operation is not WRITE New

Add Directory Entry (CZCPL1) -- Update
VISAM directory.
vMA (CZCGA) -- Get {(free) a page buffer in Key,

order to reclaim needed space from a
data overflow page.

PUT is called at CZCPA2. If WRITE New

Key and the key is not greater than the
previous key, CZCPA2 is called.

However,

if the new key is greater than the previous

GETPAGE (CZCPI) -- Input or output of a
page.

MOVEPAGE (CZCOC)
on data page.

-- Release read interlock

section 6: Virtual Indexed Sequential Access Method (VISAM)

key, PUT is called at CZCPAl to place the
new record with a move mode PUT.

The type of the requested operation (by
key or by retrieval address) is determined,

159

and the appropriate code 1S set in the DCB
tacro code field (DCBMCD) prior to calling
SETL. A check for read-only access is
nade; 1f so, VDMEP is called. SETL
{C2CPC2) is then called to locate tha
desired record.

SETL returns either found or not found.
it not found, the key did not exist and the
operation 1s assumed tG be a WRITE New Key.
At thils point for operations other than
WRITE New Key, SYNAD is called with a not
found condition. For a new WRITE, not
positioned to the end of the data set, a
locator 1s inserted in the appropricte
piace, the control information governing
Space 1s updated to reflect the insertion,
and the data record is moved. GETPAGE
(CeCFIY is called to cutput the page con-
taining the new record, and control is
returned to the caller by the RETURN macro.
it the operation is WRITE New Key, posi-
tioned to end of data set, and shared, PUT
is celled at CZCPAl with the PUT option set
0 Move Mode Complete (DCBMCD = X'0008°).
data setv is not shared, the PUT
is set to Move Mode (DCBMC1 =
‘J. Upon return from PUT, control is
rned directly tc the caller if the data
5¢t 1% not shared; if shared, GETPAGE
(CZCPI1) is called to output the page con~
taining the new record prior to returning
to the caller.

if SETL returned a found condition, the
operation to be performed is one of the
following:

* DELREC
o WEAD

@ WRITE Replace by Retrieval Address
® WRITE Replace by Key

LLREC Operation: If the operation is a
ece, the locator is removed frow the
page and the remaining locators are com-
pressed to close the gap made by the dele-
tion of the locator. The number of bytes
occupied by the deleted record and its
locator is added to the recoverable space
counter and the End of Space pointer is
updated to reflect the deletion. If the
physical deletion was performed on an over-
fiow page, the overfiow page is written out
calling GETPAGE (CZICPI1), in addition to
ing GETPAGE to ocutput the data page.
Uihe locator on the data page is cleared
prior to outputting the page. Control is

returned to the caller by the RETURN macro.

READ Operation: For the READ operation,
the data record located by SETL is moved to
the user specified area. A test is then
made to determine if the operation being
pexformed is a READ Exclusive (READ KX).

160 Part II: Virtual Access Method (VAM)

It yr»s, control is returned to the caller.
If not, and the data set is not shared,
contcol 1S returned to the caller. If
shared, MOVEPAGE (C2C00C) is called to
release the READ interlock on the data
page. <Control is then returned to the
caller.

WRITE Replace by Retrieval Address and
WRITE Replace by Key Operation: For a
WRITE Replace, where record length is equal
to or shorter than the old record, the new
data replaces the old, recoverable space 1S
adjusted, and control is returned to the
caller. For a WRITE Replace where the new
record is lomjer than the existing record,
the procedure for a Delete is followed to
adjust available space. Then the record
will be moved into the available space if
sufficiently large. If space plus recover-
able space is not sufficient to contain the
recoxrd, the record will be placed on an
overflow page where sufficient space
exists.

When space plus recoverable space is
sufficient to contain the record, GETMAIN
(CZ2CG2) is called to obtain a 1 page buffer
and the page {overflow or data) will be
copied so as to collect available space
into a single field, thus allowing the new
record to be inserted. FREEMAIN (CZCG3) is
then called to release the page buffer.
Alternatively, a WRITE may cause a page to
become filled with locators or cause an
existing record to be moved to an overflow

page.

Add Directory Entry will be called to
update the directory if the last locator on
the current page must be moved to the next
page. This process may repeat when pages
filled with overflow locators are
encountered.

GETPAGE Routine (CZCII)

GETPAGE is used by VISAM routines READ/
WRITE (CZICPE}, SETL (CZCPC), VISAM Get
{CZCPB), and VISAM Put (CICPAY, to control
page 1/0 of a data set or member. It is
used to bring data or overflow pages of a
data set into a buffer (or locate them; ,
delete existing pages, add new pages, or
update existing pages. GETPAGE calls MOVE-
PAGE to set up the action I/0 operation.
Additionally, GETPAGE releases interlocks
on the external page entries (CHAREPE) of a
shared RESTBL, RELEX and ESETL. {See Chart
OE.)

Attributes: Read-only, reenterable, publ~
ic, privileged.

Entry Points:
CZCPI1 -- Output current page, read speci-

fied page; if page number equals last
data or overflow, insert one page.

CZCPI12 -- Input a specified page.

CZCPL3 -- Delete specified pages.
CZCPG1 -- Release exclusive control WRITE
interlock of a page (RELEX).

CZCPD1 -~ Release existing READ interlock
on a page (ESETL).

Type-1 or type-2? linkage may be used for
any of the above entry points.

Input: Register 1 contains the address of

the DCB.

Modules Called:
Stow (CZCOK1) -- Update POD for overflow
page in VPAM member.

MOVEPAGE (CZCOC1}
page.

-~ Input or output a

Insert/Delete Page (CZCOD1) -- Insert added
pages or. remove unused pages. (CZCOD2)
-- Delete page from a data set or
member.

Interlock (CZ00H1)
to lock RESTBL.

-- Called by CALL macro

Release Interlock {CZCOI1) ~-- Called by
CALL macro to release RESTBL lock.

WRITEDSCB (CZCEW1l) -- Update DSCB for a new
VISAM overflow page.

VDMEP (CZCQK1) -- Output a diagnostic mes-
sage and terminate the function {(but not
the task).

VISAM PUT (CZCPA2) -- Complete PUT if that
was last previous operation.

Exits:
Normal -- Return to the calling routine
with one of the following return codes:

*00° Normal.

o4 Insert required, DCBIO switch
not set for input.

oc Maximum overflow pages exceeded.

'10° Return code of °'04' received
from MOVEPAGE (CZCOC1l}.

14" First attempt to assign overflow
page with no external space
available.

Error -~ VDMEP is called under any of the

following conditions:

e Incorrect page number on attempt to
insert page.

Section 6: Virtual

¢ No external space available.

* Storage ration exceeded.
® No secondary storage allocation.
* Attempt to expand shared data set.

e Maximum data set or member size
axceeded.

¢ Attempt to insert or delete beyond end
of data set.
s SYNAD, but no SYNAD address in DCB.

e Invalid return code from CZCOD
{Insert/Delete Page).

Operation: The several entry points serve
processing as follows:

CZCPI1 and CZCPI2: Injtialization and gen-
eral register storage is executed in con-
formance with linkage conventions. Base
registers are declared for the GETPAGE
CSECT and PSECT, DCB, DCB header and
RESTBL.

Entry flags are set to indicate which
entry point was called. Cz2CPI1 effects the
outputting of the current page before per-
forming the input of the requested page.
CZCPI2 effects the inputting only.

GETPAGE may be entered tc insert a new
page in the data set. Insert/Delete Page
{CZCOD1) is called to insert the page.
WRITEDSCB will be called to update the DSCE
if a new overflow page is being inserted.
The page is initialized to VISAM format and
control is returned to the caller by the
RETURN macro.

For a new insert which has a page cur-
rently in the buffer, a call is made to
MOVEPAGE to output the page if GETPAGE was
entered at entry point CZCPI1.

Also, if it was a pure output request,
contrel is returxrned to the caller by the
RETURN macro.

For a noninsert entered at entry point
CZCPI12, or entexyed at entry point CICPI1
for other than output, a test is made to
determine if the buffer is empty. If not,
and if the data set is shared, MOVEPAGE is
called to effect the input of the requested
page. If nonshared, and if the page (data
or overflow) is already in the buffer, con-
trol is returned directly to the caller.

If the page is not in the buffer, MOVEPAGE
is called to effect the input of the
requested page.

Indexed Sequential Access Method (VISAM) 161

CLCPE3 Entry is made at CZCPI3 to delete
pages from a VISAM data set. Insexrt/Delete
Page {(CLCODZ) is called to perform the
physical delavion. The number of data, di-
rectoyy, and overflow pages are updated to
reflect the deletion. Control is returned
o the caller by the RETURN macro.

CITPy and CZCPG1l: Indicators are set to
reies read or write interlocks. If the
rast operation was a PUT, PUT (CZCPA2) is

cailled to terminate the previous PUT. The
call to PUT causes a call to MOVEPAGE which
will release the indicated interlocks.
Control then returns to the caller.

if the last operation was not a PUT,
central is passed just beyond the CICPIL
CPiZ2 entry points. The resulting
calls to BOVEPAGE will reset the indicated
interiocks.

Inteviock Handling: GETPAGE will, upon
getting a reguest to input a page, test if
that page is a data page or an overflow
page. For an coverflow page, it will input
the page, since overflow pages are not
intericcked. For a data page, GETPAGE will
check if there is a data page intexrlock
currentiy imposed. If so, it will deter~
wine if a read or write lock is set, and
call MOVEPAGE with the appropriate option
to release the lock. It will then input
the requested page. If MOVEPAGE returns to
GETPAGE with a return c¢ode stating that the
page was locked and could not be input,
GETPAGE will set a return code, and exit,
indicating the page was not input.

Add Directory Entrvy Routine (CZCPL)

4dd Directory Entry is used to change
contents of a VISAM directory due to added
or deieted pages, which may cause the size
of the directory to change. It also
changes the key value when a change is made
to a record that deces not cause the number
of data set pages to change. (See Chart
OF <)
reenterable,

Attributes: Read-only, publ~

ic, privileged.

Restrictions:

The directory of a shared

vileged), or type-2 (nonprivileged to pri-
vileged) linkage.

Input: Register 1 contains the address of
the DCB for the member whose directory is
to be updated.

162 Part II: Virtual Access Method (VAM)

Modules Called:

GETHMAIN {(C2CG2) -- Obtain one page of vir-
tual storage for initial directory
entry.

Expand (CZICGY) -- Increase space assigned

to the directory area.

Insert/Delete Page (CICOD1) -- Insert added
directory page(s) into RESTBL. (CZCOD2)
-~ Delete page(s) no longer needed in
directory.

VDMEP (CZCQR1} -~ Output a diagnostic mes-
sage and terminate the function (but not
the task}.

Exits:

Normal ~- Return is to calling program
using the RETURN macro.

Exrror -- ABEND is calied for the following
conditions:

¢ Current page number greater than numb-
er given in DCB.

o Attempted add bevond end of data met.

» Number of directory keys not properly
comput ed.

VDMEP is called (the function is ter-
minated) under any of the following
conditions:

o Maximum directory size exceeded.

¢ No external storage space available,.

¢ Storage ration exceeded.

s No secondary storage allocation
specified.

¢ Expanding directory of shared data
set.

¢ Insertion beyond end of datz set.

Deletion beyond end of data set.

* Maximum data set size exceeded.

Invalid return code from CICOD.
Operation: Initialization and general
register storage is executed in conformance
with linkage conventions. Base registers
are declared for the CBECT and PSECT, DCE.
RESTBI. and DCB header.

If one or no data pages exist, no keys
are placed in the directory and control is
returned to the caller by the RETURN macro.

If keys are to be taken out of the di-
rectory as a result of the deletion of data

pages, the keys are removed; if any direc-
tory pages are vacated due to key removal,
they are deleted from the data set by cal-
ling Insert/Delete Page at CZCOD2. The
number of directory pages is updated and
control is returned to the caller by the
RETURN macro.

If a data key is to be added to the di-
rectory, and no directory pages exist, vir-
tual storage space is obtained by calling
GETMAIN. The directory page is logically
inserted into the data set by calling
Insert/Delete Page at CZCOD1l. The newly
ocbtained directory page is initialized.

The number of keys in the directory is
computed. The number of keys in the direc-
tory must be egual to or less than the cur-
rent data page number minus 1, which means
that the call is to change a key. If the
current data page number minus 1 is greater
than the number of keys, ABEND is called,
since an attempt is being made to add data
beyond the end of the data set.

If a new key is being added, the last
directory page is checked to see if enough

room exists to hold the key. 1f no space
is available, and no assigned but unused
directory pages exist, the directory is
expanded (CZCGU4) providing the data set is
nonshared. If shared, VDMEP i: called.

For the nonshared data set, a check is made
to determine 1f more than one ['CB has been
aopened for the data set; if so, all are
linked to the same ISD and SISL buffer
pagye. The new directory page i1s initia-
lized and logically inserted into the dato
set by calling Insert/Delete Page at
CZCOD1. Processing continues as if a new
key were being inserted or a key being
changed. The key is moved to the directo-
ry. If a new key is being added, a new end
of directory is computed.

The ISD Integrity flag in the RESTBL i
set; this indicates to VSAM CLOSE (CZCQAa)
that it should write the ISD to external
storage.

Control is returned to the caller by the
CALL macro.

Section 6: Virtual Indexed Sequential Access Method (VISAM) 163

ViIRTUAL PARTITIONEL ACCESS METHOD (VPAM)

VEAM OVERVIEW

The partitioned organization of the vir-
Tt access method ases Loth seqguential and
index sequent tal organizations to process
Gata set members. This method uses macro
instructions and routines to combine VSAM
and VISAM data sets into a single data set
<5 a series of logical partitions. To deal
with the complexities associated with this
access method, TSS/360 uses a partitioned
organization divectory (POD) and relative
pagesexternal page correspondence table
(RESTBL). The pOD and the associated data
ontrol block (DCBY are used to relate a
member, oxr its alias names, to the relative
position of the member within the data set.
The RESTBL is used to determine the actual
ext:rnal device address of the requested
pagels).

« following contribute to the virtual
tioned access method (VPAM) .,

User Coded Macros
DCRB Supplies parameters to define
member structure and attributes.

FIND Reguests access to a member
descriptor from the POD.
STOW Specifies updating of a member

and/or alias descriptors in the
PoD.

Control Blocks

DCB D:ta control block -
0 ‘'ganization-independent working
s‘ oraqge.

RESTBL Relative external storage corres-—

pondence table,

pPOoD Partitioned organization
directory.

Genegal VPAM Routines

Find Locates member descriptor in POD.

Stow Updates member and/or alias
descriptors in POD.

Search Searches POD for member or alias
name.

Extend increases size of POD.

PCD

Relocate Updates the POD to account for

Members in size of the POD or any member

cf the data set.

164 Part iI: Virtual Access Method (VAM)

GETNUMBR Gives page number of a member
relative to the data set, based
on starting page number of the

member .

VPAM CONTROL BLOCKS

The POD and RESTBL member reader are
described below.

Partitioned Organization Directory (POD)

The POD, which consists of page(s) at
the beginning of a VPAM data set is placed
in the user’s virtual storage by OPENVAM at
data set OPEN time. The POD page(s) are
provided and maintained by VP/M for each
partitioned data set. Its function is to
document member names with their relative
locations within the data set and their
attributes {(data set organization, number
of pages, user data field). The POD also
documents all aliases assigned to the
various members of the data set,

The maximum size of a partitioned data
set is 65,535 pages; the maximum size of
all members or even a single member is 65,
534 pages. When the data set is shareable,
the POD is placed into shared virtual
storage and protected from the user.

The directory, Figure 27, is divided
into four parts; each POD part provides a
particular function. The four parts are as
follows:

1. An interlock control entry.
2. A space control entry.
3. A directory block hashing table.

4. Directory block entries linked into 64
chains.

The interlock word and the procedures to
update same are described in the module

§
i Interlock Control (& bytes)

| Space Control (8 bytes)

},_.._-_,.. -

| Hashing Table (256 bytes)

| Linked Block Entries (variable length)
L

SN ORI S

Figure 27. Partitioned Organization Direc~
tory (POD)

descriptions fur VAM general services rou-
tines Interlock (CZCOH), and Release Inter-
lock (Cicol).

The space control entry (PODSPA) indi-
cates the number of pages in the POD and
the number of pages in the data set (Table
4s).

The hashing table (PODHAT) contains 64
pointers (each four bytes in length to the
member and alias descriptors. The hashing
value of a member name or alias causes
selection of one of the 64 pointers, which
in turn contains the byte address relative
to the POD, of the linked block entry
corresponding to the first name having that
nashing value. This block entry then
pornts to the word address relative to the
POD, of the second name having that hashing
value, etc.

Linked block entries are of two types:
member descriptor entry and alias descrip-
tor entry. A member descriptor entry is
defined in Table U46.

An alias descriptor is defined in Table
47.

Use of Member Headers in RESTBL

For partitioned data sets only, a field
(DHDLNK) in the DCB header (DSECT name:
CHADHD, Table 48) of the RESTBL, points to
the member header (CHAMHD) rather than to
the RESTBL header. The RESTBL member head-
er gives additional data needed to locate
pages within a member.

Table 45. POD Format

gBytesESymbolT E;;tents

{0 }PODW -T;;ite interlock

il {PODR |Read interlock

2 }PODRC {Read interlock counter

3 |PODIC |Control bytes for PODR and

| | PODRC
4-5 :PODPG ‘Number of pages in POD

|
| PODNDP | Number of pages in data set,

o e o fati s S S— > o S s i . S i, P s s e S e bt s 5}

!
|
!
|
{
I
|
{
i
]
!
l
|
|
|
[
|
L

6-7
| | including POD pages
| I
8-B |PODLBP|Linked block pointer,
| |pointer (relative to POD) of
| |next available byte in POD
| |
C~-10B|{PODHT |Hashing Value Table 256
| ,
F S

|bytes
i

VPAM ROUTINES

Descriptions of Find, Stow, Search,
Extend POD, Relocate Members, and GETNUMBR
follow.

Find Routine (CZ00J)

Find searches the POD in order to locate
the member descriptor. The member informa-
tion including the starting page number and
RESTBL header offset is transmitted to the
member header and the associated DCB. (See
Chart PA.)

Attribut2s: Read-only, reenterable, privi-
leged, public, system.

Restrictions: A DCB can refer to only one
member at a time. STOW must be issued to

change user data in the POD prior to issu-
ing a FIND. The DCB must be opened before
FIND is executed.

Entry Point: CZCOJ1 -- Via type-1 or type-

2 linkage.
Input: On entry, general register 1 con-

tains the address of the following four-
word parameter list:

Word 1 -- Address of DCB.
Word 2 -- Address of member name or alias.

Word 3 -- Address of area where user data
is to be placed.

Word 4 -- Address of member of bytes of
usexr data.

Modules Called:
Stow (CZCOK1) -- Stow member already
checked out to his DCB.

CKCLASS (CKCLS) -- Check protection class
of user area and DCB for compatibility.

VDMEP (CZCQK1l) -- Process error occurring
while trying to access locked member
headex.

Search (CZCOL1l) ~-- Locate member or alias

descriptor in POD.

VSAM Open (CZCOPl1l) -~ Initialize for
sequential organization.

VISAM Open (CZCPZ1) ~-- Initialize for index
sequential organization.

Interlock {CZCOHl1l) ~-- Impose interlocks on
RESTBL for shared data sets.

Release Interlock (CZCOI1l) -- Release
interlocks on RESTBL for shared data
sets.

Section 7: Virtual Partitioned Access Method (VPAM) 165

|

]

|

]

|

!

i

i luser data is appended.
{ IBit 1=1 indicates that user
|

i

|

!

{

|

§

Tabie 46, POD Member s ucriptor
{Part 1 of 7%

| St b At e |
{SymboljDatal Fietd 1efinition |
. R i
| POMNAMIC The membw r pane, i
i fleft~adyusted and padded withy
jblanks, it necessary. For a4}
{deleted euntry, each byte of |
jthis field is set to X'Fr'. i
| 1
POMFIG{X {Bit 0=1 to indicate that this|

{is a member descriptor.
{Bit 1=0 indicates that no {
!

data is appended.

: PF
{Bits 2-7 are presently not
fused.

|
i
!
|
!
i
|
|te the next descriptor whose |

i {name is a hashing synonum to |

H {the member name. This field |

i jpoints to the relative |

{fullword upon which the next |}

{thashing synonym descriptor i

jexists, cr is zero if no suchj

jdescriptor exists. !

{Bits 20-21 indicate the i

{organization of the wember:

i 00 Seqguential i

i (1 Index Sequential

|Bits 22-23 indicate the i
|record length format of the

| member:

{ 00 Variable

i} 01 Fixed

i 10 Undefined

i

N {First page of this member
jrelative to data set.
|
|Number of data pages in this
| member.
I .
N |Sequential member - record
|length (actual or maximum)
]

2

|

1
|N JLength in bytes of the keys
| |for an index sequential
i | member.
i l
POMIX |N |Bits 0-11 - length i the
i {logical reccrds for ¢ member
i jwith fixed length locical
{ {records, the maximum logical
{ |record length for an index
! | sequential member with
i |variable length records.
! |
i |Bits 12-23 -~ relative
} iposition of the key within a
i |logical record of an index
i | sequential member.
Iy

§
s
|
¥
|
1
1
|
|
%
H
|
[
i
|
|
|
|
&
|
1
|
|
|
|
|
|
|
|
1
|
i
|
|
a
4

D

166 Part II: Virtual Access Method (VAM)

Table 46. POL Member Descriptor

(Part 2 of 2)

T

|Symboljlata | Field Definition

} ______ + _____ + s s o et o v e e e o e e

| POMOV PN pNumbe . ot overt low pages

t | | Cindex siegiient 1al membey

| ftoniy) .
[|

POME, DN iPad percentage for index

| Isequent ial pages. Maximum
tvalue 1s 50.
|

N {Number of directory pages,
jindex sequential member, or
jnumber of unused bytes in the
jlast Jdata page for a
|sequential member.

{

N {nNumber of bytes of user data
lcontained in next field; this
{field and following field
|will be absent if bit 1 of

|
POMD? |
|
{
i
!
!
|
!
:
] | POMFLG is 0.
!
!
!
!
|
!
!
!
I
I
!
{

S A g S —

POMBI!

{

X jOptional data to be supplied
jby the user. Length of this
|field is specified by POMBU.
{For obhject program mcdules,
jthis field describes the
jrelative (to the member)
{iocations of the internal
|symbol dictionary. The next
{descriptor will begin at a
jword boundary regardless of

|the length of this field.
(S i i _

|
|
t
z
z
§
i
1
i
!
i
!
i
:
;
!
:
| POMUSE
!
|
|
|
z
|
i
|
|
;

B o s o AT ntn AT AmeTh GO A (NI e SO S St i B iy S i

SETL {(CZCOT1) {VSAM) -- Position DCB to
beginning or end of VSAM member.

SETL (CZCPC2) (VISAM) -- Position DCB to
beginning or end of VISAM member.

Expand RESTBL {CZCCI1) ~- Expand RESTBL by
1 page to accommodate new member header.

TSEND (CEAP7) -- Function is executed while
waiting to access user counter in member
header.

CLOSEVAM (CZCOB1) -- Close member header if
open on a STOW-type D.

Exits:

Normal -- Return is made to the caller with
a4 completion code in general register
15. If the user area and size were
urspecified in the calling parxameter
list, the location and number of bytes
of user data in the member descriptor
(POD) are returned as words 3 and 4 of
parameter list addressed by general
register 1.

Table 47. POD Alias Descriptor Table ﬂﬂ; RESTBL Member Headers (CHAMHD)
g At S b Sttt St ettt
iSymboliDatai Field Definition { | Symbol{Data| Field Description]
T D ST I ey I Ay
| POENAM| C |The alias, left-adjusted and | | MHDNAM] € |Member name %
|padded with blanks if | | i] i
|necessary. For a dele?ed | |MHDFEP} W |Otfset to first external pagel
lentry, each byte of this | { jentry ot the member {
|field contains X'FF'. Y. | |
I
|
|
|

{For a dele;ed entry, each N |Number of directory pages
ibyte of this field contains | (index sequential

!
!
‘
| |X'FF".
|
I

s e R e o e AU i S pti, W e e G

1
! i
l
! | !
{ | i
i % | |organization only) i
| i
{POEFLG| X |Is zero (high-order bit being| {MHDDAT| N |Number of data pages in the 5
| jzero indicates that this not | | | |member i
| |a member descriptor). | | { { |
| . i |MHDOVF{ N |Number of overflow pages !
POFHAS| W |Bits 0-19 are a pointer to | i H | tindex sequential i
| jthe next descriptor whose {] ! jorganizatiomn} i
i {name is a hashing synonym to | i] | |
i | {field 1. This field points | {MHDBYT{ N |Number of bytes used in last |
| | |to the relative fullword | | | | page of sequential |
| | |containing the next hashing | | | {jorganization |
{ { | synonym descriptor, or is | | { | |
i | l|zero if no such descriptor | |MHDFLG| X |Flag to indicate sharing {
§ i :exists. | i | |status and organization {
! i i i
H | |Bits 20-23 are zero. | i % } X'80' Shared %
i] | | {] | X'20* Index Sequential |
{POEMEM| 8 |Pointer to the member | | | |]
{ i |descriptor for which this i |MHDINT} L |Interlock byte *o protect {
{ i |entry is an alias (byte | | | |number of users and chain }
| i |address relative to the POD).| | i]link fields |
et 4 - 4 |] | I
|MHDUSE| N |Number of users associated |
| | |with this member |
I I | !
Return codes: |MHDVAL} X |Value of first external pnge |
i H jentry in the RESTBL of the {
{ | |member |
*00° Member or alias found and member | { |
opened. {MHDNMH{ D |Chain to next member header#* |
i 1 I !
|MHDPMH| D {|Chain to previous member |
oy Member name or alias not found. | i {header* |
b -4 i . 1
{*This value gives the relative location |
08 The DCB is creating a member -- A { within the RESTBL by multiplying by 8 !
STOW-N must be issued for memberx { (left shift 3 bits). {
being created before this DCB can be b —— e i e 4
used to FIND a member.
toc* Data set organization in member
descriptor does not match DSORG
specified in DCB. (Can only occur FIND calls VDMEP if:
if DCB specified VIP or VSP and mem-
ber descriptor did not match; if VP
was specified in DCB, Find fills DCB 1. While waiting to access locked member
in with DSORG found in member headers, an Attention is received.
descriptor.)
*10° The user area length is not large 2. While waiting to access locked member
enough to contain the user data to headers, 100 TSENDs are completed.

be retrieved.
3. The DCB is found to be closed or

14t Member to be located has already invalid.
been checked out to this DCB. (Mem-
ber has been previously found.)} 4. The DSORG is invalid.

Section 7: Virtual Partitioned Access Method (VPAM) 167

ADREND wrl b
detecting any of b

condit yonc :

brreg - -

eXecutaed upon
toliowing

doe s ot DR,

hiererider proint to

* KESTBL of 5 shared data set

FAransion.

Ieaqurres

* LYTOY return trom SRCHASDST call.

* Error veturn from STOW call.

DCB and

® The protection classes of the
HSCr area arc incompatible.

¢ DOP Header not iiaked to menmber header.

s VPAM member header
active DCR Header.

locked, with nn

d member or alias name

<
1

[

™
[N

» I

B atal of

nva
v
1S

Cpreration: Initialization and general
register storage iz executed in conformance
with linkage conventions. Base regioters
are deciared for the Find CSECT <nd PSECT,
LCr, bBCH header, RESTBL, member header and
PG,

Upon entry, 1f the DCR neader does not
peinT to the DCH, ABEND 15 called.

The RESTBL is write-interlocked for
shared data sets.

The DCB is tested to determine if it is

currencly in use. 1If a member had been
found eviously and was still checked out

to thae DCE, find calls Stow (R) to close
the memper. 1If the DCP is in use tor
creating o member, the call to Find may
have been done erronecusly. A return is
givern to the caller indicating that the DCB
1T in age ror creating a member. This
allows the user to name and stow the member
and calvage the work he has done which
could have been lost from an erroneous cali
tC Find, since the member being created was
unnameni.

fi ithe IOF 18 pot in use, the POD is
Searcned for tne name given to Find. If
tne name cannot be located in the POD, a
"not tound® return is made to the caller.

It the found name was an alias, the
corresponding member name is located.

User data is moved to the user area if
it was specitied.

#“iere more than one DCE is open for out-
put for a nonshared member, all DCB headers
are linked to the same member header and
fiags are set to indicate the data set may
not be writien cut.

168 vPart II: Virtual Access Method (Vam}

The dctive meaber header chain an t e
REGTHL 19 soarched to see if the member is
already i1n use bty another DCB. If the mem-
ber is 2crive a 1wect is made to see if it
is write-interlocked. This means that the
member is currently being modified and is
unavailable for A time=-wilice ond v
requested via TSEND. At tne resumpt 1on of
the user's task, the FIND has to be ve -
initiated, since the other user may have
deleted the member or changnrd its name
while it was interlocked.

15¢,

If the member wes actaive, the DCB header
15 linked to the active header. Dummy
header space is placed in the deleted head-
er chain if 1t existed.

if the member was not active, a member
header has to be built. It can be built in
the dummy header space provided by OPENVAM,
in available (deleted header) space, or it
can be buiit in unused RESTRL. A durmmy
header will exist if this is the first call
to Find since OPENVAM was cxecuted. If a
FIND was done and th: DCHE header was linked
to an active member neader, the dummy head-
€r hpace wat released. Subsequent FINDs
will use the deleted header space, 1if
availakle, or unused RESTEL space. If
unused RESTBL space is required and thers
15 not enough space remaining to accommod-
ate a member header, the RESTBL is expanded
by callipng expand RESTRL (CZCgIY (non-
shared dava set only).

After the member header is built, data
Set parameters are filled in the DCB from

the POD.

T1 directory paaes exist (VISAM), GRT-
MATN (CZCGA), is called to obtain virtual
Storage space and the directories are read
in by calling MOVEPAGE (CZCOC).

The dara set orginization (DCBDSO) is
rested. If VSAM or VISAM partitioned, SETL
is called, de:endinj con the Open option to
logically position the members for proces-

sing. If the DSORG is "non-specified®
(VP), the data set srganization is obtained

from the POD and the appropriate access
dependent cpen routine is called,

The RESTBL interlock is releaced for

shared data sets, and control is returne:d
to the celler by the RETURM macro.

Stow Routine (CZCOF)

Stow is used to modify, add, or delete
renber or alias descriptors in the POL.
The RESTBL will also be updated as
required. Stow also updates the user data
field in the member descriptor. {See Chart
PB.}

Attributes: Read-only, reenterable, privi-
leged, public, system.

Restrictions: Each member and alias name
within a VPAM data set must be unigque.

The DCB used to control operations on a
member must be open prior to issuing a
STOW.

If a type-N STOW or type-R STOW is given
for a member, subsequent references to the
same member must be preceded by a FIND. A
FIND must be issued before attempting a
STOW (R), (U), or (D).

If new aliases are being added to an
existing data set, no duplicates are
allowed within the input list of new
aliases.

Entry Point: CZCORK1 -- Called by either
type-1 (privileged to privileged), or type-
2 (nonprivileged to privileged) linkage.

Input: Parameters are passed to Stow in
general registers as follows:

Register 0 -- Address of the user supplied
data area. The formats will be inter-
preted, depending on the type of STOW
issued. They are described with the
STOW macro format.

Register 1 -- Address of the DCB. Note
that the macro code field in the DCB
will be preset to one of the values
(hex) discussed with STOW macro format.

Modules Called:
CLOSEVAM (CZCOB1) -- Close member header if
open on a STOW type-D.

Search (CZCOL1) -~ Search POD for a member
or alias name.

Search SDST (CZCCEl) -- Search shared data
set table.

Interlock (CZCOH1} -- Impose read or write
interlocks on POD and RESTBL.

Release Interlock (CZCOI1) -- Release read
or write interlock on POD and RESTBL.

Reclaim (C2ZCOG1) -- Release external pages.

Relocate Members (CZCONl1) -- Updates POD
after call to RECLAIM.

Extend POD (CZCOM1) ~-- Expand POD by page.
VSAM Close (CZICOQ1) -- Close VSAM member.
VISAM Close (CZCQAl) -- Close VISAM member.

GETMAIN (CZCG2) -- Obtain storage for the
alias list.

FREEMAIN (CZCG3) -- Release virtual
storage.

Expand (CZCG4) -- Obtain additional conti-
guous storage for the alias list.

Disconnect (CZCGA) -- Logically disconnect
a task from an area of wvirtual storage.

VDMEP (CZCQK1) ~- Output a diagnostic mes-
sage and terminate the function (but not
the task).

Find (CZC0J1) -- Search POD to locate a

member descriptor.

Exits:
Normal -- Return with one of the following
codes in register 15:

00" 3TOW successful.

oy New name, or replacement for old
name, already in use (N, NA, C,
CA), or old alias does not belong
to member specified.

08 Member name not in POD.

*10° 01d member name not in POD (C),
or alias name not in POD (CA,
DA).

14T Illegal STOW type requested
- Macro code out of range.
- Name specified is all FFs.
- Input area not on FW bound-

ary.

- STOW (NA) and alias count=0.

i8 User data exceeds maximum length.

*20° Attempt to expand POD for systenm
catalog.

Exrror -- When any of the following errors

are detected, the ABEND procedure is
executed to terminate the task:

s DCB header does not point to DCB.
e DSORG in DCB is not VIP or VSP.

¢ Type-R STOW, member name not found,
and not called by ABEND.

e DCB already opened for another member.

s« A call to Search SDST gave an error
return.

e Member checked out by another DCB.
e DCB not linked to specific member.

e Member in use; cannot delete it.

Section 7: Virtual Partitioned Access Method (VPAM) 169

Aren oeny GfF the [0 4OWING v ILO@G e
detect od. s VDMEY .o executed and the
function (rai the task) o termgdnated:
Fead-oniy acces. .

* HNo externs) stor.adge space.

& Storage ration owcesded.

» o secondary alincation.

¢« Attempt to expard RESTBL for shared
data set.

& Magximum data set sire exceeded.

, milsmatohn.

= POD/RES
& Maxiwmum directory size exceeded.

yetugrn code from CLCOM or
wilrl alse cause SYSER) .

* Duplicate input CJTOW NA Or NAR. Inva-
1id or cliosed DY passed as parameter.

inwtaaliratzon and general

. storase 10 oxervled ir conformance
with linkage conventions Base registers
are declared for the Stow CSECT and PSECT,
IS2, BCB, DCO nheader, member header, and

PCD.

The wvalidity of the STOW type, and the
validity of perticuiag types of STOW witn
the existing CPEN options, are verified.
ABEND 1s callrd 1f any errors or inconsis
tencies are fcund.

i

The RHESTRL is inveriocked for shared
agata sets. The lock will be released priocry
te any RETURN VSAM CLOSE (CZCOQ) or VISAM
CLOSE (CZCCAY are called if required.

The POD 1s searched to locate the member
descriptor. £ the member name is not
found in the 0D, a member descriptor 1s
puilt for a type-N STOW. The POD and
RESTEL page cnters are updated to reflect
the addition »f the new member and to
reflect chang=2s to ali CFLNed members. If
the PCD has b2en updated by STOW, the POD
Integrity flaj in the RESTBL 1is set; this
causes CLOSEVAM (CZCOB) to write the POD to
external storage. Control is returned to
the caller by the RETURN macro.

If the menrber name is found in the POR,
processing continues for the particular
STOW type:

e Type-N -- If a name was found on a type
N (new member), no further processing
is done, and return is made with a
return ccde signifying that the new
name was not unique.

170 Part II: Virtual Access Method (VAM)

Type~NA -- New cliases may be added to
an existing member. The PCD is
searched for each alias being added.

If the aliaeses are unique, an alias
descriptor i1s created for each alias
being added. These new alias descrip-
tors are linked to the appropriate mem-
rer descripgtor, and control is returned
to the calier by the RETURN macro.

Type-R «=- OTOW (ype-h 1s called to
replace uaser datae, and close the mem-
her. If user area was specified, the
user data 1is stored in the POD. This
may cause thse member descriptor to be
moved, sinpce 1t may not previously have
contained user data, or the new user
data requires additional space. If the
member descriptor is moved, the hash
pointers and the alias links are
updated. If the user count in the mem-
ber header is zero, the member header
15 close=d, {that i:5, the member header
1s added to the deleted member header
chain, the DCB header link is cleared,
and the member name is set to
8XL1°'FF"). The POD is updated, and
control 19 returned to the caller by
the RETUPN macro.

Type-1 -~ Type~U STOW accomplishes the
same thing as type-R, except that the
member header is not closed. It
remains active for further processing.

Type-D -- STOW type-D (delete) causes
rhe data pages associated with a member
to be deleted by calling Reclaim
{CZCOGY. The member and alias descrip-
tors are deleted from the POD. The DCB
it initialized for reuse, and control
is returned to the caller by the RETURN
macro.

Tvpe-DA -- Ailases may be deleted from
an existing nember. The POD is
searched for the alias being deleted.
If found, the alias descriptor is
deleted from the POD. This process is
done for eacn alias being deleted.

Type~-C and Type~-CA -- Type-¢C and -CA
STOW are name changes of members or
aliases. The POD is searched for the
name being changed. When found, the
new name member or alias replaces the
old name acccrdingly.

Type-NAR -~ New aliases may be added to
an existing member as in ¢ type-NA STOW
hut if any new aliases duplicate exist-
ing aliases or names, none are stowed
and a list of these duplicates is supp-
lied to the caller. Stow does a GET-
MAIN for VMA of list, passes VMA in
register 0 and will not FREEMAIN this
area. If there are duplicate aliases
within an input list of new aliases,

some aliases may be stowed and,
although a return code of '04' will be
set, no duplicate names wWill be supp-
lied the caller (see Restrictions).

3earch Routine (CZCOL)

Search is called by Find, Stow, and GET-
NUMBR to locate a member descriptor in the
POD for a given member name or alias.
MOSEARCH, entered at Search's second entry
point, may be used to search past the first
matching entry in the POD for additional
entries with the same name. (See Chart
PC.)

Attributes: Read-only,
leged, public, system.

reenterable, privi-

Restriction: If MOSEARCH is called, Search
must have been called first, and the
results of that search left undisturbed.

Entry Points:
CZCOL1 -~ Entered wvia type-1 linkage to
locate first matching member descriptor.

C2COL2 -- Entered via type-l linkage to
search past first matching entry in the
POD, seeking additional entries with the
same name.

Input: General register 1 contains the
address of a two-word parameter list:

word 1 ~- Address of the DCB associated
with the PCD to be searched.

Word 2 -- Address of an 8-character field
containing the member name or alias to
be used as a search key.

The search code field in the DCB will
contain a code to indicate the type of
search being requested:

M Member
A Alias
E Either
Modules Called: None.
Exits:
Normal -~ Register 15 contains one of the

following return codes:

‘00" Successful.

‘ou" Entry with matching name and type
not found -- no hashing chain for
hash value.

‘08" Entry with matching namwe and type

not found -- hashing chain exists
for hash value.

Error -- None.

Operaticon: Initialization and general
register storage is executed in conformance
with linkage conventions. Base registers
are declared for the CSECT, DCRB, DCB head-
er, POD, and POD member descriptor.

The DCB is modified per results of
Search or MOSEARCH:

DCR

Symbol Description

DCBHV Hash value of member or alias.

DCBSC Relative location within POD of
found descriptor.

DCBSP Relative location within POD

descriptor of preceding found
descriptor in same hash chain.

Search has two entry points. CZCOL1 is
the entry point for the initial call to
Search. CZCOL2 is the entry point for con-
tinuing Search {MOSEARCH), after Search has
initially been called. A switch (DCBSWT)
is set to indicate that the current entry
was to Search {CZCOL1). This switch 1is
tested on every entry; if on, the member
name is hashed; if off, the name is not
hashed, since it was hashed on the initial
entry and the value still exists in the [CB
(DCBHV) .

The hash value is used to obtain the
hash chain pointers from the POD. If the
pointer is zero, the return code is set to
"no hash chain®™, and control is returned to
the user by the RETURN macro.

I1f the hash chain pointer exists, the
descriptor is obtained. The name input tc
Search is compared to the descriptor name.
if the names do not compare, the rest of
the chain is searched in the same manner
until the name is found or the end cf the
chain is reached., If the end of the chain
is reached and the name is not found, the
return code is set "not found™ and control
is returned to the caller by the RETURN
Pacro.

If a descriptor name is found that
corresponds to the Search input name, the
search type (member, alias, or either) i:
tested to determine if the found descriptor
is the correct type. If the search type
was "E® {either), the search was success-
ful, and the return code is set to " foun<i."
The location of the last two descriptors
are saved (for MOSEARCH) and control is
returned to the caller by the RETURN macio.

If the search type was "M" (member), «nd
the found descriptor is a member descrip-
tor, a "found” exit is made as described
above. If the search type was "M" and the

Section 7: Virtual Partitioned Access Method (VPAM) 171

found descriptor is an alias, the search of
the hash chain is continued.

If the search type was *A" (alias) and
the found descriptor is an alias, a "found®
exit is taken as described above; other~-
wise, the hash chain search is continued.

Extend POD Routine (CZCOM)

Extend POD is called by Stow to expand
the POD by one page, both in virtual
storage and on the external storage device.
(See Chart PD.)

Attributes: Read-only, veenterable, privi-
leged, public, system.

Restrictions: It is not possible to expand
shared data tables. If this becomes neces-
savy. a return code is passed to the caller

and this function terminates.

Entry Point: CZCOM1 -- Type-1 linkage
(privileged to privileged).

input: Register 1 contains the address of
the DCE associated with this POD.

Modules Called:
Expand (CZCGH4) -- Expand the size of the
virtual storage area containing the POD.

Inserxt {CZCOF1} -~ Insert external page en-
try into RESTBL.

Relocate Members (CZCON1)} ~-- Adjust member
page numbers to compensate for expanded
PO

VDMEP (CZQK1) -- Output a diagnostic mes-
sage and terminate the function (but not
the task).

Exits:

Normal -- Return to the calling routine

with one of the following return codes:

00" Normal.

fou" No storage space available.

08” Storage ration exceeded.

‘oct No secondary storage allocation
specified.

10" Shared data set RESTBL cannot be
expanded.

t14° Maximum data set/or member size
exceeded.

'18°* Insertion beyond end of data set.

ric? Deletion beyond end of data set.

172 Part II: Virtual Access Method (VANM)

Error -- VDMEP is called if an invalid
return code is received from Insert.

Operation: Initialization and general
register storage is executed in conformance
with linkage conventions. Base registers
are declared for the CSECT and PSECT, DCB,
DCB header, POD and RESTBL.

The POD is expanded by one page by cal-
ling Expand with the virtual storage
address of the POD, the number of pages
currently in the POD, and a one page expan-
sion request.

On return from Expand, the returned vir-
tual storage address is tested to see if
the POD was relocated due to expansion. If
relocated, the POD base and POD pointer in
the RESTBL have to be updated. An external
page entry is inserted in the RESTBL (by
calling Insert) to correspond to the new
POD page. Error returns from Insert cause
an ABEND. The data set length is checked
to see that the new page added does not
exceed the maximum allowable size of a par-
titioned data set. A return code is set if
the maximum data set length has been
exceeded.

The number of POD pages is updated in
the POD and RESTBL.

Since the page inserted in the data has
changed the relative position of all mem-
bers, Relocate Members (CZCON} is called to
update the relative location of existing
members in the POD.

Control is returned to the caller by the
RETURN macro.

Relocate Members Routine (CZCON}

Relocate Members is called by GETNUMBR
and STOW, to update member descriptors in
the POD to compensate for added or deleted
pages within a partitioned data set. HMem~
ber headers of members that are checked out
are also updated. (See Chart PE.)

Attributes: Reenterable,
leged, public, system.

read-only, privi-

Entry Point: <CZCON1 -- Entered via type-1
linkage.
Input: Register 1 contains the address of

the DCB associated with the data set being
modified. Relevant fields in the DCB are
set as follows:

DCBN Data set page number at which
relocation must occur.
DCBM Number of pages inserted or

deleted.

DCBOP '0800' indicates insert.

'0400' indicates delete.

pModules Called: None.

Exits: Return to the calling routine.
Operation: Initialization and general

register storage is executed in conformance
with linkage conventions. Base registers
are declared for the CSECT, DCB, DCB head-
er, POD, Member Header, and RESTBL.

Member descriptors in the POD are
located by searching the hash chains. They
are examined to determine if they have been
relocated. The relative location and the
external page value of the first page of
each member is recorded in the POD.

1f a member reguires relocation (that
is, it is past the point of relocation),
the member is tested to determine if it is
the member causing relocation and if the
first page is affected. 1If the first page
is affected, the first page value is
updated and the search of the hash chain is
continued.

I1f the current member is not the member
causing relocation, or it is the member
causing relocation and the first page is
not affected, the POD is updated to reflect
location.

The member header chain in the RESTBL is
searched to determine if the current member
is checked out (that is, active - a member
header exists). If the member is checked
out, the member header is updated to
reflect the relocation. The search of the
hash chain is resumed.

When a hash chain is exhausted, the next
hash chain is searched until all chains
have been processed. The member header
chain is tested to see if any members are
being created. The start of members being
created is adjusted in the member header
for any relocation.

Control is returned to the caller by the
RETURN macro.

GETNUMBR Routine {CZCOQ)

GETNUMBR (Get Member Page Number} is
called by MOVEPAGE (CZCOC) to convert the
page number relative to member, to the page
number relative to the data set; and by
lnsert/Delete Page (CZCOD) to control
changes in the size of a member. (See
Chart PF.)

Attributes: Read-only, reenterable, privi-
leged, public, system.

Entry Point: CZCO01 -- Via type-1 (privi-
leged to privileged) linkage.

Input: Register 1 contains the address of
the DCB associated with the partitioned
data set for which member page numbers must
be corrected. Relevant fields in the DCB

are:

DCBN Page number relative to member
of the first page in the
request.

DCBM Number of pages to be processed.

DCBOP *8000' - Input.

'2000" ~ Output.
‘0800' - Insert.
'0400' - Delete.
Modules Called:
Search (CZCOL1) -- Search POD for member
descriptor.
Insert {CZCOF1l) -- Insert pages in RESTBL.
Relocate Members (CZCON1) -- Adjust member

description for added or deleted pages.

Reclaim (CZCOG1l) -- Delete member page
entries from RESTBL.

TSEND (CEAH19) -- Wait for shared pages to
go out of use before deleting pages.

VDMEP (CZCQK1) ~- Output a diagnostic mes-
sage and terminate the function {(but not
the task).

Exits:
Normal -- Register 15 contains one of the
following return codes:

‘00" Successful.

‘ou" No external storage space
available.

o8 Storage ration exceeded.

roc* No secondary storage allocatiocn
specified.

10" Shared data set RESTBL cannot be
expanded.

L1y Maximum data set or member size
exceeded.

'18°* Insertion beyond end of data set.

'1c’ Deletion beyond end cf data set.

Erroxr -- VDMEP is called if an invalid

return code is received from Reclaim or

Section 7: Virtual Partitioned Access Method (VPAaM) 173

insert, or it an old member could not he
iocated in the POD {(the member has been
deleted abnormally).

Operation: Initialization and general
registers are stored in conformance with
linkage conventions. Base registers are
deciared for the CSECT and PSECT, DCRB, DCR
neader, member header, PCD and RESTBL.

v
i

3

he ofiset of the member is tested to
detexmrine if it has been relocated since
the ia3t operation. An adjustment has to
pe made in the POD and member header for an
¢ld member. Only the member header need be
adjusted for a new member, since it has not
been STOWed and no POD entry exists.

tent of the current operation is
see 1f it is within the range of
| - for a deleticn or pure number
translation, or contiguous to the member
for an insertion. A return cocde is set if
the operation is not within the computed
limics.

174 Part II: Virtual Access Method (VaMm)

The page number relative to the member
is converted to a page number relative to
the data set. If the operation is not an
insertion or Jeletion, control is returned
to the caller by the RETURN macro.

If the operation is a deletion, the
pages are deleted by calling Reclaim
(CZCOG). If the deleted pages d4id not
belong to a member being created but to an
existing member, Relocate Members (CZCON)
is called to relocate the member in the POD
and member headers, by the amount of dele-
tion. Control is then returned to the
caller by the RETURN macro.

Similarly, the data pages are inserted
by calling Insert (CZCOF). Relocate Mem-
bers is called if the insertion was in an
existing member, toc adjust the other mem-
bers by the amount of the insertion. Con-
trol is returned to the caller by the
RETURN macro.

PART III

QUEUED SEQUENTIAL ACCESS METHOD (QSAM)

QSAM routines operate upon data sets of
gueued, sequential organization. They will
process all of the 0S/360 QSAM facilities.
(USAM uses move-mode to provide the func-
tional equivalent for 0S/360 substitute-
mode programs.) In addition, TSS QSAM pro-
vides the following features not supported
by 0S/360 QSAM:

1. Both locate and move mode macro
instructions can be intermixed on the
same data set.

2. Variable record formats are allowed on
a data set opened for RDBACK.

3. A SETL routine is provided to alter
sequential processing of a QSAM data
set.

QSAM's basic functions are blocking and
deblocking logical records, issuing 1/0
requests, checking, and positioning for
blocks of data.

QSAM itself blocks, deblocks, and buf-
fers internally, but uses BSAM to perform
I/0 operations such as reading, writing,
checking, and positioning for access to
data. Through BSAM routines, QSAM also
provides labeling services and, if
required, ASCII translation. Table 49
1ists the modules of BSAM invoked by QSAM,
and briefly describes their functions.

¢SAM Macro Instructions

The macro instructions used on a QSAM
data set fall into three groups:

1. Those which are directly serviced by
USAM.

a. The GET macro instruction retrieves
for the user a single logical
record. <

b. The PUT macro instruction adds a
single logical record to a block of
records.

c. The POTX macro instruction returns
an updated block of records to a
data set, or includes a record of
an input data set in an output data
set.

d. The TRUNC macro instruction causes
tne next logical record of an out-
put or update data set to be.
treated as the first record of the
next block.

SECTION 1: GENERAL DESCRIPTION

Table 49. Usage of BSAM Modules

fro———————— - R S B bttt 1
|Title and |] | i
|Module ID | VCON | RCON | Usage |
__________ S SR
| READ/WRITE |CZCRAS | CZCRAP | Reads or writes t
:CZCRA | | | blocks of data |
|]
| CHECK [CZCRCSICZCRCP{CheCkS the com- ;
|CZCRC | | |pletion of read |
| | | jor write opera- |
| | | jtions |
| | |
| POINT JCZCRMA|CZCRMP |Repositions a |
| CZCRM { i jdata set |
| |] | | |
| CNTRL {CZCRBS|CZCRBP |Repositions a |
| CZCRB | | |data set |
| | | | |
| NOTE |CZCRNA |CZCRNP|Returns relativej]
| CZCKN | i jaddress within aj
i | | jvolume of last |
| i l | block read or }
{ | i {written |
| | | |
| BSP | CZCRGA |{CZCRGP|Backspaces a |
} CZCRG | | | data set |
L i — e m L e e e e e e e o e s e e 3

e. The RELSE macro instruction causes
the remaining logical records in an
input or update buffer to be
ignored.

f. The SETL macro instruction speci-
fies a new start location for
sequential processing.

2. Those which are serviced only by BSAM,
but affect the operation of QSAM.

a. The OPEN macro instruction fills in
certain fields of the data control
block that were not filled in at
assembly time, checks volume
labels, constructs tables, and pro-
vides work space and buffer areas.

3. Those which are serviced mainly by
BSAM with additional functions per-
formea by QSAM.

a. The CLOSE macro instruction com-
pletes or purges all outstanding
I1/0 requests, releases the storage
obtained by the OPEN routines, and

o writes trailer labels.

Section 1: General Description 177

£ The o L RUELRUCEICL, ditects
LI COntE prodyesm o ¢dvance o

L4 -
e nestt wodume of & dsla sen

tded tor QSAM is known
(WRBK . R

WYk area provi
OWH work area, or

3 is placed in the DOBRWK fieid of
¢ vwntyu! vilock, Dy SAM Open. All

iy the OWK work ayea, excsyt
words reserved for data event contyol
bicuks, age A :

CGWREE consists of:

QW5
3 2 1% word save srea (QWEKLEN-QWEI3) .
< “tﬂxage for thres data

ci bPlocks (DEOCRIL-DECE3I) .

1 ea For %@“‘i.“i"lﬁ raturn

§wond
ﬂxesse% d@?ﬁ?ﬁn subsections of $SAM
T OWRGRO

3. i Hsave

OWRERT Y.

i, EAVE AXEH
its Wwhen
KWRI~QWRWKE) .
e ave arex (O S3Ving
e 2 Linkane,

The DSECT used to vefer to MNEKAR oau pe
found in Appendix A.

in addition to providing the MK work
area, S&M Open wiil provide QSAM with:

178 Paxt 1Il: Queusd Se

i. Cue buffer zavh for date sets
for Update, and when SEYL (5}
reguaested in the DCR MACRF field

L. Shrae bufferi €or =ach dats set opened
o1 BDBACK uUsing variable reoood
format.

3. o buffers each oy zil other data
SETY.
PsAMte bufrering techuigques will oe dis

i
cassed furthexr in Parxt II of this

Tontrel Blocks

¥ollowing are brief Jdescriptions of cach
of the control blocks used by OSAM.

data CUontyel Block (DCBI: The DCB is
OSAM's primary source of information aboub
che data set. It is defined by the user at
azsenbly time through the DCB macro
instruction, and may be filled in or wmodi-
at O?ﬁN time or during executiocn.

i B containz a iisv of the aaln
fx$ldﬁ cf che DCB used exclusively by OS4M
ith a brief descriptiorn of sach.

Event Control Blaock {DECBY: The DECE
rovides information necessary fur the con-
rrol of each /0 operation and refiects the
status of the completed operation. (SAM
initializes the DECB before I-0 yeacuests
dr» nme@d te BSAM, and the BEAW Posting
reutine completes the comtrol block.

nata Extent Block (DEE): (QSAM uses the DEB
to determine if there are any outstanding,
unchecked I/0 requests cor erroxr comiitions.

guential Access Method (QSAM)

GECTION 2:

INTERFACE RULES AND MOLDULE DESCRIPTION

It is important to note that QSAM is
designed as a "fence sitter”™ routine, and
will run in the same privileged status as
+he routine which invokes it. Also, since
no linkage is established to the problem
program when QSAM has been invoked by any
other routine, all linkage between the pro-
blem program and QSAM will be of type-1l.

There are 22 subroutines within the (SAM
module. Since QSAM does not have a PSECT,
register usage and register saving are kept
to a minimum by carefully régulating use of
those registers.

The linkage between subroutines differs
from normal linkage procedures, because,
when one subroutine is invoked by ancther,
it may not return directly to the invoking
subroutine without having first invoked one
or more other subroutines. The normal pro-
cedures for invoking a subroutine, with the
return address in register 14, require a
separate save area for each of the 22 sub-
routines, in order to maintain the integri-
ty of return addresses. The 22 subroutines
are therefore divided into seven levels,
such that no subrcutine invokes another
subroutine on the same level, either
directly or indirectly. For example, the
GET subroutine on level 3 never invokes
another subroutine which is also on level
3, nor invokes any subroutine which in turn
invokes another subroutine on level 3.

Thus one register is assigned as a return

register for all subroutines on one level,
there being no need for a separate return

register save area for each level. Thus,

each subroutine has an exit register based
upon its level, as defined in the subrou-

tine interface table (Table 50).

All subroutines are invoked by a BASR
instruction with register 15 containing the
entry point address of the subroutine, and
the exit register of the particular subrou-
tine containing the return address. The
invoked subroutine must save its exit
register in one of the fields (QWKGR1-
(WKGR7) provided in the QWK work area for
this purpose, in order that the exit
register may also be used for calculation
during processing. When it has completed
its processing, the subroutine restores its
exit register and issues a Branch to
Register instruction (BR).

OSAM uses two base registers, which are
established at each of the nine entry
points. Another register, the base regist-
er for the DCB known as DCBREG, is also
established at each entry point, and
remains the same throughout the processing

Section y:

of any one macro instruction. There 1is
also an assigned base register for the
DECL, known as the DECREG, which must be
loade¢d by each subroutine using it, <ince
there may be more than one DECE in use.
Registers 0 anu 1 are also reservea to pass
parameters between subroutines. The para-
meters expwcted by each subroutine are
listed in Table 50.

Since QSAM generally runs in the same
privileged state as the protiem program, it
may or may not be of the same privilege as
the BSAM modules which it invokes. All ot
the modules listed in Table 49, except
CZCRN, are privileged routines. CZCRN is
also constructed as a "fence-sitter" rou-
tine, and will take on the privilege status
of QSAM whenever it is invoked by QSAM.
Therefore, type-1 linkage is always estab-
lished to invoke CZCRN, using the V-con and
R-con defined within the QSAM module.

Before establishing linkage to any of
the other BSAM modules, it is necessary to
determine the status of (SAM. The subrou-
tines Read/Write, Check, Point, Contreol,
and Backspace pexform this function with
respect to their BSAM counterparts, by
testing the first kit of the VPSW in the
ISA table (CHAISA). 1If QSAM is privileged,
type-1 linkage is established using the
v-cons and R-cons defined within the QSAM
module. If it is not privileged, type-2
linkage is established via the ENTER SVC,
with the appropriate code in register 15.

The parameters expected by the BSAM

modules and the possible return codes from
them are listed in Table 51.

QSAM Routine (CZCSA)

OSAM blocks and deblocks logical records
within a buffer, performs buffering serx-
vices, and issues requests to BSAM for
transfer of data between storage and any
1/0 device. (See Chart QA.)

Attributes: Reentrant, nonrecursive,
closed, resident in virtual storage,
assumes privilege of caller.

%

Entry Points: QSAM has nine entry points
and nine entry sections which serve to
channel progessina through the appropriate
subroutines.

CZCSAR -- Entered upon issuance of the
first GET on a data set, the first GET
following a SETL type-E or -B, or the
first GET following a FEOV.

y

2

Interface Rules and Module Description 179

o e o g £ e < 282 8 . S e e e 1 8 2 e
i | Ewit ; rexameter }
PSaprounine! fedisile) Rﬁgl-?éyb cri hnc;, i Cthexr Subroutines Invoked
- R Tre st S e e e ene e ot e R ST y o s
et § 3 Pimln address |GETI0, PUTXIO
; i fo=ure:r work axea addiess {(iy any) |
H] 4
] ! i I
PR i 3 1=k aanvess | PUTIO
} { jO0=user work aites address (if any) |}
]] { {
AV i ¢ [1=DUE address |PUT, PUTXIO
{ § iG Input DCB address for output PUTX{
H {
[i i i
LRI i 2 11=0CB address | PUTIO
: ! | |
] Z 1 1=DCE address i -
| [! |
i i 3 j L=DiB address {PUT1IO, CHECK, FLUSH
f i ! !
ISETLR | 2 {1=DCB address JTREOV, INITIO, GET, CHECK,
‘ i {0=pointer to PTTRZ or ZZCC# {POINT, BSP, CNTRL
i ; { |
¥
POETLY i 2 {1=nCB address IBSP, INITIO, GET, SYNAD, CRTRL,
: i | | TREOV, FLUSH
: | ! |
M § 2 {1=DUB address | CHECK
! { ! |
1 PR i FI=002 address | TREOV, CHNTRIL, PFOINT
] i {
FIWITI i 3 11=DCB address |GETIO, READ/WRITE
! 1
: 5 {1=DCE address {READ/WRITE, CHICK, COMIC
{] !
i 4 {1=LCB address | READ/WRITE, CHECK, COMIO
i H
H i 5]
VEUTRIO { 4 }1=DC3 address i READ/WRITE, CHECK, GETIO
i i | i
;CGMXQ H & {1=DCB address i -
) 3
i i i
(OVNRD] 7 fi=errox type code -
; i | 0=DECB address {
i l i |
| REAL/WRITE | 6 {1=DECB address | -
i ! {
H 1
FONTRL } 3 ,”‘BuB address | SYNAD
i | {0=action code and value |
b i] |
| ESE } 3 {1=DCB address i -
| ! | i
{ POINT | 3 {1=DCB address | SYNAD
{ | {0=pointer to TYRZ or ZIZICCe {
] i |]
Lo | & {i=DECB address | SYNAD
! ! i]
iF i 4 §1=D{B arg dre lCHECK
i A i

fgbip{i . Subrcutine

Interiace

j*The terms TTRZ and ZZLC refer to the relative form of the retrieval address of any

| “lock within a data set on magnetic tape or direct access devices.
| obtained, in its relative foxm, by BSAM NOTE (CICRN).

This address is
TTRZ refers to data sets on

| magnetic tape, and Z2CC refers to data sets on direct access devices.
t

R s it sy oo, I s S AN SO AR S PR i o o L P O S S ST, AR 5 7 e SR ST WG iAo SR S 0 e el WK P AT T s G T ST OO A s < (St WAL L M RITLID OT M0 P s s e T amsrin

180 Part Iil:

Queued Sequential Access Method (QSAM)

e R

Table 51. Parameters and Return Codes of

BSAM Modules

Table 51. Parametcers and keturn Codes of BSAM Modules

[Sl R At e b Sabeiebe kb i ;]

| Moduled Parameterx:. i Return Codes {

b e dom oo ee i

CZCHA {GR1=UECH address | None i
i i

CZCRC JGRI=DECR address | SYNAD request flag in DECB

i {EUDAD flag in DCB
{GRO=DECB address
|

I

|

1€ I
| }
| ! |
| i |
|C2CRM JGR1-0CEB address {Normal return, GR15=0 i
| |GkO=r.ointer to TTRZ |(Error return, GR15=4 i
| | or 22CC |Unrecoveranple error flag |
| | {in DER |
| i | |
|CZCRB |GR1=DCB address {Normal return, GR15=0 i
i {CtRO=action code and |Error return, GR15#0 {
| { number value } i
i ¢ i §
|C2CRG {GRI=DCB address {Normal return, GR15=0 |
i i {Erzor return, GR15%0 t
l i | i
{CZCRN [GR1=DCB address [GR1=TTRZ or 22CC address |
[G SR b e ——d

CZCSAB -- Entered upon issuance of the
first PUT on a data set, the first PUT
following a SETL type-E or -B, or the
first PUT following a FEOV.

CZCSAG -- Entered upon issuance of all GETS
except those listed under CZCSAA.

CZCSAW -- Entered upon issuance of all PUTs
except those listed under CZCSAB.

CZCSaX -- Entered upon issuance of a PUTX.

CZCSAT -- Entered upon issuance of a TRUNC.

CZCSAR -- Entered upon issuance of a RELSE.

CZCSAV -- Entered only by SAM Close or
FEOV.

CZCSAS -- Entered upon issuance of a SETL.

Input: The following parameters are

passed:

Register 0 -- Address of work area (if any)
for entries CZCSAA, CZCSAB, CZICSAG, and
CZCSAW.

Register 0 -- Address of input DCB for
CZCSAX when an output-mode PUTX is
issued.

Register 1 -- Address of DCB for all entry
points.

Data References: CHADCB, CHADEC, CHADEB,

CHAISA, QWKAR.

Modules Called:
BSEM Read/Write (C2ZCRA) -- Entry at CZCRAS.
For data transfer.

BSAM Check (CZCRC) -- Entry at CZCRCS.
Test I/0 results.

Section 2:

BSAM Point (CZCRM) -- Entry at CZCRMA.
Reposition a data set.

BSEM Control (CZCRB) -- Entry at CZICRBS.
Reposition a data set.

BSAM Backspace (CZCRG) -- Entry at CZCRGA.
Backspace.

BSAM Note (CZCRN) -- Entry at CZCRNA.
Identify last record read or written.

Exits:
Normal -- Return to the calling routine.
Error -- ABEND termination under the fol-

lowing conditions:

a. During processing of a GET macro
instruction, when the computed sum of
the logical record lengths (11) of
variable length records does not
equal the specified block size (LL).

b. During processing of a PUT macro
instruction, when the user attempts
tc PUT a logical record longer than
the specified maximum block size.

c. During processing of a PUT macro
instruction, when the user specifies
a value in the length control bytes
(11) of a variable record larger than
the logical record length previously
estimated in the DCB.

d. During processing of a PUTX macro
instruction, when the previous macro
instruction was not a locate-mode
GET.

e. During processing of an output-mode
PUTX macro instruction, issued on an
output DCB whose address is in
register 1, when the associated DCB,
whose address is in register 0, has
been opened for Output.

f. During construction of a block of
fixed format records, if the user
causes an incorrect length output
block to be created by changing the
value of the logical record length.

g. When a PUT macro instruction is
issued on an update, input, or read-
back data set, or when a GET macro
instruction is issued on an output
data set.

h. When a SETL is issued, but there is
no (S) in the DCB MACRF.

Otherwise, exit to user's SYNAD or EODAD

routine.
operation: The subroutine functions are
shown in Table 52.

Interface Rules and Module Description 181

Tabie 52.

Subroutine

Functions

. g e R ey
i Name | Entry(s’ {Charti Function |
fomrmmm e - o 1
| GEY {CZCAs? { DM |Deblocks logical records |
| | i i
jpuT ICZCSAS { DN |Blocks logical records |
| ! | i i
| PUTX {CZCSA2Z | DO Returns logical records retrieved by a locate-mode |
} i | |GET to an UPDATE or OUTPUT data set |
] ! | | |
| TRUNC { CZCSA3 { DP |Truncates current block (output or update) i
|] | i {
i RELSE | CZCSAL | DQ |Releases current block (input, update, or readback) |
| | | |
I TREOV | CZC3AY | DR |Completes ox purges outstanding I/0 requests |
] | | |]
{|SETLR | CZCSAL | DS |Positions data set at specified retrieval address |
| | | | |
{SETLP i | DT |Positions data set at previous logical record |
i i i] |
t

|SETLC | CZCSAZ | DU {Obtains retrieval address {TTRZ or 2ICC) of current]
{ { | {1ogical record |
| | ! |
| SETLEB | CZCSAH | DV |positions data set at beginning or end of current |
| { | { volume {
[| i L |
| INITIO | CZCSA6 | DW |Initializes buffer addresses, block size, etc., and|
i i { jconstructs DECBs {
| | ! i
|GETIO jCZCSAS 1 jperforms buffering for input operations]
i j (Entry from GET) | } i
| | | ! |
| {CZCSAL | | |
i | (Entry from PUTX) | | |
1 | | i |
| PUTIO {CZCSAU | {performs buffering for output operations i
| | | { |
j PUTXIO JCZCSAT { |Performs buffering for update data sets |
] | | i |
{COMIO |CZCSAM | DX }Initializes for a new buffer §
| | | | |
{ SYNAD }|CZCSAN | iTransfers control to user's SYNAD routine and i
i i] | performs checks on error options |
| i | | |
| READ/WRITE| CZCSAD | |Issues an I/0 request for data transfer |
| | {tEntry from GETIO) | |]
| | i | I
| |CZCSAE |] |
] | (Entry from PUTIO) | i |
{ { |] i
| CNTRL jCZCSAC | |Requests repositioning of data set | |
| | | | |
| BSP | CZCSAY | {Requests backspacing of one block |
1 | { | |
| POINT | CZCSAP | |Requests repositioning of data set i
| | | |
| CHECK | CZCSAK | |Requests a check on results of an I/0 operation {
{] | | |
| FLUSH | CZCSAF | |Purges I/0 activity from DECB queue |
i 'y i A i)

182 Part III:

Queued Sequential Access Method (QSAM)

Blocking Logical Records: The user
issues a PUT macro instruction for each
logical record he wishes to include in
the output data set. The PUT subroutine
adds the logical record to the block if
it will fit within the current buffer.
Otherwise, the block is considered com-
plete, and the record for which the pPUT
was issued will be treated as the first
record of a new blcocck. The user can
cause a block to be regarded as complete
prematurely by issuing a TRUNC macro
instruction.

Deblocking Logical Records: The GET
subroutine returns to the user a single
logical record each time he issues a GET
macro instruction. When a block of
records has been read and checked, the
buffer address of the first logical
record is returned to the user if the
GET macro instruction was in locate
mode; or, if it was in move mode, the
first logical record is moved to his
work area. When the current block is
completely processed, the next GET
issued causes the buffer to either be
refilled if the data set was opened for
Input or Rdback, or to be written back,
if required, to an update data set and
then refilled. At any time, the user
can cause processing on a buffer to be
regarded as complete by issuing a RELSE’
macro instruction.

Buffering Blocks of Data: The normal
buffering facility of QSAM is known as
double buffering. This involves the use
of two buffers, one of which will be
currently in use while I/0 activity is
being performed on the other. Thus, on
a normal input or readback data set,
while logical records from one buffer
are being supplied to the user, the
other buffer is being refilled. On a
normal output data set, QSAM will con-
tinue adding logical records to one
buffer while the other is being written
out.

Each buffer is assigned to one of the
first two DECBs contained in QSAM's QWK
work area. Pointers to these DECBs are
contained in the DCB (DCBDE1l and DCBDE2).
To achieve the alternating of buffers, all
read or write operations are performed on
the DECB pointed to by DCBDE2, and all
checking operations are performed on the
DECB pointed to by DCBDEl. Following each
checking operation, the two pointers are
switched so that, when the next I/0 is
initiated, the read or write performed on
the DECB previously pointed to by DCBDEZ
and now pointed to by DCBDE1l will be
checked, and the buffer belonging to the
DECB now pointed to by DCBDE2 will be eith-
er refilled or written out.

Section 2:

Once a buffer has been either filled or
written out, and checked, it is available
for processing, and OSAM will begin return-
ing logical records from it to the user, or
adding logical records to it as they are
supplied by the user. When this current
buffer is completely processed, QSAM iscues
either a read request to retill o 1t, or a
Write request to write 1t ou'. Ther the
previous read or write operation 1s
checked, and that buffer becomes available
for processing. Buffering is performed for
input or readbick, cutput, and update data
sets by the GETIO, PUTIO, and PUTXIO cub-
routines, respectively.

Under some circumstances, it is neces-—
sery to perform only single buffering; that
ir, only one buffer is used. In this case,
the pointers to the two DECBs are both set
to point to the first DECB, so all opera-
tions will be performed on the same DECB
regardless of the switching of pointers.

The decision to use double or single
buffering is based on the OPEN option of
the data set, or on the combination of
device type and macro option specified in
the DCE. Double buffering will be done i:
all cases except the following:

1. When the data set is opened for
UPDATE.

2. When the DCB MACRF requests a SETL
(s).

Single buffering must be done on an up-
date data set to allow the user to update
one block of records at a time. No reading
ahead can be done until it is determined
whether or not the current block of recoris
must be updated, since an update write can
only return the las* block read.

With double-butfering facilities, QSAM
requests two writes before requesting a
check on the first write.

Examples of Double Buffering:

I. Double buffering invelvina an outyut
data set.

Phase I
DCBDE1 DCRDEZ2
| i
v v
DECB1 DECBZ
| |
v v
Buffer I tempty? ruffer II (available

for processing)

OSAM builds the first block of the
user's data set in Buffer II by adding to
the buffer each logical record for which a

Interface Rules and Module Description 183

PUT 15 issued, until the buffer is full.
Then a write request is issued for Buffer
II, a check request is issued on Buffer I
{since DECB1 is initialized by QSAM to in-
dicate normal completion, this check con-
stitutes a dummy request), and the DECB
pointers are switched.

Phase 11
DCBDE2 DCBDE1
| |
v v
DECB1 DECB2
| [
\Y% v

Buffer II (written
out, unchecked)

Buffer I (available
for processing)

(SAM now builds the second block of
records in Buffer I. When it is complete,
a write request is issued for Buffer I, a
check request is issued for Buffer II, and
the DECB pointers are switched.

Phase III
DCBDE1 DCBDE2
| |
v \Y
DECB1 DECB2
| |
v v

Buffer II (written
out, checked, now
available for
processing)

Buffer I (written
out, unchecked}

Buffer II is again available for proces-
sing. The third block of the data set is
built in Buffer II, and when complete, a
write request is issued for Buffer II, a
check request is issued for Buffer I, and
the DECB pointers are again switched. Thus
the processing operation continues, alter-
nating the buffers used, until the user has
placed the last logical record of his data
set in the buffer, at which time he may
CLOSE the data set, causing the last block
of records to be written out and checked
immediately.

II. Double buffering involving an input
data set.

Phase I
DCBDE1 DCBDE2
[|
v v
DECB1 DECB2
| |
v v

Buffer I (read,
unchecked)

Buffer II {empty)

Since on the first 1/0 request of an
input data set, both buffers must be

184 Part III:

primed, an initial read is requested on
Buffer 1. (This varies from the normal
procedure of reguesting reads only on the
DECB pointed to by DCBDE2.) Then another
read is requested to fill Buffer 1I, a
check is requested on Buffer I, and the
DECB pointers are switched.

Phase II
DCBDEZ2 DCBDE1
| i
v v
DECB1 DECB2
| |
v v

Buffer I (read,
checked, and avail-
able for processing)

Buffer II (read,
unchecked)

Each of the logical records in Buffer I
is returned to the usexr when he issues a
GET macro instruction. When all the reco-
rds in Buffer I have been returned to him,
a read request is issued to refill Buffer
I, a check request is issued on Buffer II,
and the DECB pointers are switched.

Phase II1I
DCBDE1 DCBDE2
| o
v v
DECB1 DECB2
| |
v v
Buffer I (read, Buffer I1 (read,
unchecked) checked, and avail-

able for processing)

Buffer II is now the current buffer in
use, and each of the logical records in it
is returned to the user until there are
none left, at which point Buffer II will be
refilled, Buffer I will be checked, and the
DECB pointers will be switched again. Pro-
cessing continues in this manner until an
end of data set is encountered. At that
point, the user's EODAD routine gains
control.

III.
data set.

Double buffering on a readback

Double buffering on a readback data set
of fixed or undefined length records is
handled in the same manner as that on an
input data set, except that blocks of reco-
rds are read beginning with the last block
of the data set. However, if a data set
opened for Rdback specifies variable-format
records, the procedure is varied to include
the use of a third buffer. After a block
of records has been read and checked, a
copy of it is moved to the third buffer.
This copy is used as a table to contain
record lengths so that the records con-
tained in the actual buffer may be accessed

Queued Sequential Access Method (QSAM)

in reverse order. A torward sicarch is made
through the block for the length control
pytes (11) in front of each record, and
these bytes are saved in the blank control
bytes (bb) of the following record. The
length of the last record in the block is
saved in the DCB in order that the address
of the first record to be accessed {(logic-
slly the last record ot the block) may be
computed. The following Jiagram demon-
strates the layout of the third buffer.

LLBB 11,bb DATA 11,11, DATA 11,11, DATA

C VA,

11, =DCBSVL

The beginning-of-buffer address for
blocks of records in a readback data set is
at the logical end of the block. By sub-

Section 2:

tracting from that address the length of
the last record in the block, which is
saved in the DCB, the first record
requested by the user is accessed from the
actual buffer. Then the length of the pre-
ceding record is obtained from the control
bytes of the current record in the thirxd
buffer, and saved in the DCB so that the
address of the next record may be computed.
By maintaining its own copy of the current
buffer, GSaM can be certain the lengths of
the previous logical records recorded in
the control bytes are always correct.

Issuing 1/0 Requests, Checking, and Posi-

tioning for Blocks of Data: QSAMs internal

functions are performed entirely within
storage. Any I/0 requests for tramsfer of
data between storage and any I/0 device, or
requests for repositioning a data set, are
passed on to BSAM. Table 50 in this sec-
tion lists the BSAM modules invoked by QSAM
and the expected return codes.

Interface Rules and Module Description 185

Before discussing the internal logic of
the OSAM routine in relation to QSAM macro
instructions, it is necessary to establish
certain rules which will be followed throu-
ghout the discussion.

1. All fields within the DCB, when
referenced, have a prefix of DCB.

. 211 fields within the DECB, when
referenced, have a prefix of DEC.

3. BAll references to fields within either
table indicate the contents of the
field unless it is specifically stated
otherwise.

4. Each of the nine entry subroutines is
referred to by the name of its entry
point. A calling module always enters
CSAM at the entry point itself. For
internal processing, however, a
reference to "returning to CZCSAA"
will indicate the entry subroutine,
not the entry point.

5. oince certain of the OSAM subroutines
have the same names as BSAM modules,
such as Read/Write or Check, reference
to the BSAM module of that name will
always be clearly marked by referring
ro “BSAM Read/Write (CZCRA)® or by
using just the module ID *CZCRA" after
it has been identified with the name
of the module.

COMMON PROCESSING

certain of the (SAM subroutines perform
the same function each time they are
entered, regardless of the type of data
set, device or macro instruction being
used. To simplify the tracing of each
macro instruction, these subroutines are
priefly described below, and thereafter
referred to only to indicate the specific
points at which they are invoked to perform
their functions.

SYNAD Subroutine

SYNAD is entered whenever an error in
reading, writing, or positioning has
occurred. If the user has provided his own
SYNAD routine, a copy of the DECB on which
the error occurred is moved to DECB3, and
control is passed to his SYNAD. If not, or
upon yreturn from the user’s SYNAD, tests
are made to see if the erroneous block may
be accepted or skipped, or if the task must
be abnormally terminated. If no abnormal

exit is required, the appropriate flags are
set in the DCB, and a return is made to the
calling subroutine.

Read/Write Subroutine

The Read/Write subroutine has two
entries.s CZCSAD is the entry when & read
request is issued, and CZCSAE is the entry
when a write request is issued. The appro-
priate type code is set into the DECB, and
linkage is established to BSAM Read/Write.
when control is returned to Read/Write, a
return is made to the calling subroutine.

Control Subrxoutine

The control (CNTRL) subroutine invokes
the BSAM Control routine. If the return
code from BSAM Control is not zero, the
SYNAD subroutine is invoked. Otherwise, a
return is made to the calling subroutine.

Backspace Subroutine

The Backspace subroutine invokes BSAM
Backspace. After control is yeturned to
Backspace, a return is made to the calling
subroutine.

Point Subroutine

The Point subroutine invokes BSAM Point.
Oon return from CZCRM, the SYNAD subroutine
is invoked if the return code register con-
tains a four. If the return code is zexro,
or upon return from SYNAD, a return is made
to the calling subroutine.

Check Subroutine

The Check subroutine establishes linkage
to BSAM Check (CZCRC). After control is
passed back from CZCRC, if SYNAD is
requested the SYNAD subroutine is invoked,
and after control is passed back to Check,
a return is made to the calling subroutine.
1f SYNAD is not requested and EODAD is
indicated, control is passed tc the user's
ECDAD routine, from which no return is
expected. Otherwise, a return is made to
the calling subroutine.

Flush Subroutine

Three cases exist:

1. 1I1f no I/0 requests are outstanding, an
exit is made to the calling
subroutine.

186 Part III: Queued Sequential Access Method (QSAM)

2. When any 1/0 regquest is outstanding
and the DECB has been marked inter-
cepted and EODAD has been requested,
then the number of outstanding I/O
requests in the DEB (DEBNCP) is set to
zero, and a return is made to the cal-
ling subroutine.

3. If the I/0 request which remains out-
standing is not complete, an AWAIT SVC
is issued and the completion is
awaited. The Purge flag in the DECB
is then set on, and control is passed
to the Check subroutine. Upon return
from Check, a return is made to the
calling subroutine.

GETIO Subroutine

The GETIO subroutine first invokes Read/
Write to perform a read on the DECB pointed
to by DCBDE2, and then invokes Check to
check the read done previously on the DECB
pointed to by DCBDE1. If Check detected an
error in the read operation and the user
indicates it is to be skipped, GETIO
switches the DECB pointers and goes back to
repeat the reading and checking operations,
until no error is detected. Otherwise,
GETIO invokes the COMIO subroutine to
jnitialize buffer addresses, and then
returns to the calling subroutine.

PUTIO Subroutine

PUTIO invokes Read/Write to perform a
write on the DECB pointed to by DCBDE2, and
then invokes Check to check the DECB
pointed to by DCBDEl. PUTIO gives control
to COMIO to reinitialize the free buffer,
and then makes a return to the calling
subroutine.

PUTXIO Subroutine

IF A PUTX has been issued on the current
block, PUTXIO invokes Read/Write to write
the updated block back to the data set, and
Check to check the completion of the write.
Following this, or if no PUTX was issued on
the block, PUTXIO invokes GETIO to read and
check the next block. It then returns to
the calling subroutine.

LOGIC OF MACRO SERVICES

The logic of the GET, PUT, and PUTX
macro instructions can be broken down into
three phases. Phase 1 deals with the com-
munication between the problem program and
the body of the QSAM routine. Phase 2
describes the initialization which is done
only for: the first of these macro
instructions issued on a data set; the
first issued after a SETL type-E or -B has
repositioned the data set; or the first
after FEOV has advanced to a new volume in

the data set. Phase 3 will describe the
functions performed for all the above macro
instructions when subsequently issued.

GET Macro Processing

Phase 1 - Communication: When the user
issues a GET macro instruction, the macro
expansion sets a locate or move mode code
in the DCB, and then establishes type-1
linkage to the QSAM entry point whose V-con
is found in DCBGTV. At the entry point,
the user's registers are saved, and base
registers for QSAM are established. If
CZCSAA is entered, phase 2 is begun by giv-
ing control to INITIO. If CZCSAG is
entered, phase 3 is begun by giving control
to GET.

Phase 2 - First GET; Initialization:

INITIO fills in two DECBs, for all data
sets, and places their addresses in the
DCB. It sets the forward or backward reads
byte in the DECB, and sets the addresses of
the buffers obtained by SAM Open into the
data area pointers of the DECBs. Then the
DCB address and the maximum block size are
set into the DECBs. If single buffering is
being done, the DECB pointers in the DCB
are set equal to each other, and GETIO is
invoked to read and check the first block.
If double buffering is being done, Read/
Write is invoked to read the first block,
and GETIO is then invoked to read the
second and check the read of the first.

Before returning to INITIO, GETIO gives
control to COMIO to initialize buffer
addresses. COMIO calculates the actual
size of the block read in, by subtracting
the residual count in the CSW from the
maximum block size. It sets the current
record address in the DCB from the data
area address in the DECB, and then calcu-
lates the end-of-buffer address using the
actual block size. If the record format is
variable, four is added to the record
address to allow for the four system con-
trol bytes in front of the block, and the
sum of the lengths of the records is
checked against the block size. 1f they
are not equal, arnd if the user had not
specified an ERCPT parameter of ACC in the
DCB, the task abnormally terminates by
executing an ABEND macro instruction.
Otherwise, COMIO returns to GETIO, which
immediately returns to INITIO. Before
returning to CZCSAA, INITIO places the
v-con of CZCSAG in DCBGTV and DCBGTR, in
order that the next GET issued by the user
will enter QSAM at that point.

After INITIO has returned control to
CZCSAA, the Get subroutine is invoked, and
phase 3 is entered.

Section 3: Internal Logic 187

Prhage o =~ Cperation: If processing on the
current bufter 1s complete, Get invokes
either PUTXIC, to write an updated block
back to an update data set, and read in the

next plock, or 1t 1nvokes GETIC to refill
the completed puffer. After tne return

from either PUTXIO or GETIO, or 1if proces-
Cing On the current puifer 1s not yet com-

plete, GET calculates the current record
address, and i1f the GET macro instruction
was in locate mode, sets the current record
address into register 1 in the user's save
arcae. If the GET macro instruction was in
move mode, the record is moved into the
user'’'s work area.

Then the record address 1s incremented,
by tne length of the current logical reco-
rd, 50 as to point to the end of the reco-
rd. 1f 1t is within the block, an immedi-
ate yveturn is made to the entry section.

It it is at the end of the block, a flag in
the DOB 1s set on to indicate that proces-
5ing on the current buffer is complete, and
the return is made. If it lies outside the
block, and if the user has not specified an
EROPT parameter of ACC in the DCB, the task
abnuormally terminates by executing an ABEND
macro instruction. COtherwise, the return
to the entry section is made.

3ince processing on any GET macro
instruction is now complete, both CLZCSAA
and CZCSAG 1ssue a RETURN macro instruc-
ticn, to restore the user's registers, and
link back to the problem program.

PUT Macro Processing

Phnagse 1 - Communication: When the user
issues a PUT macro instruction, the macro
expansion indicates either locate or move
mode in the DCB, and establishes type-1
linkage to the QSAM entry point whose V-con
is in DCBPTV. At the entxy point, the
user's registers are saved, and base regis-
ters for QSAM are established. If CZCSAB
is entered, phase 2 is begun by giving con-
trcl to INITIO. If CZCSAW is entered,
phase 3 is begun by giving control to PUT.

Phase 2 - First PUT - Initialization:
INITIO builds two DECBs for all output data
sets, as described in phase 2 of the GET

ro instruction, except that it sets the
DECB type code to indicate that only writes
are to be done. It then invokes the BSAM
Note routine (CZCRN) to obtain the relative
address within the volume (TTRZ or ZZICC) of
the last block read or written. If single
buffering is being done, the DECB pointers
in the DCB are set equal to each other. If
double buffering is being done, the comple-
tion code in the DECB is set to indicate
“complete with no errors®, so that the
first check, which will be done on an
unused DECB, will return normally. Follow-
ing this, if the record format is variable,

188 Part III:

the two length contrcl byvtes at the begin-
ning of the block are initially set to
four, and the current logical recora
address is set to the beginning-of-buffexr
address, plus four. The end-of-buffer
address is calculated by adding the maximum
block size to the beginning-of-buffer
address.

The V-con of CZICSAW is placed in DCBPTV
so that the next PUT issued will enter QSAM
at that point, and a return is made to
CZCSAB. From CZCSAB, control is then
passed to Put, and phase 3 is entered.

Phase 3 - Operation: If the current block
of records is complete, Put gives control
to PUTIO to write the block out and check
the previcus write operation. The record
format is checked, since variable format
records are treated separately from fixed
and undefined, the end-of-buffer address is
set to the current record address plus the
logical record length. Then, for both
fixed and undefined records, if the PUT
macro instruction is in locate mode, the
current record address is set into register
1 in the user*s save area. If the PUT is
in move mode, the record is moved from the
user's work area to the current record
address, and in order to support substitute
mode exchange buffering, the address of the
user's work area is set into register 1 in
his register save area.

If the block is complete, the End of
Buffer flag in the DCB is set on. If the
block is not yet complete, or after the End
of Buffer flag is set, the logical record
count for the current block is increased by
one, and a return is made to the entry sec-
tion. If the record overflowed the buffer,
the task abnormally terminates by executing
an ABEND macro instruction.

For variable format records, a check is
first made to see if the last PUT issued
was in locate mode. If so, the length con-
trol bytes of the record which was subse-
quently built in the buffer are checked to
be sure that the record is not larger than
the length previously estimated by the
user. If it is larger, and if the record
is too long to fit into the buffer, the
task is abnormally terminated.

Following this, or if the last PUT was
not in locate mode, if the current record
will not fit into the buffer, PUTIO is
invoked to write out the buffer, check the
previous write, and provide a new buffer
address. After return from PUTIO, or if
the current record will fit into the buff-
er, the current record address is set into
register 1 of the user's register save area
if the PUT is in locate mode, and a return
is made to the entry section. If the PUT
is in move mode, the record is moved from

Queued Sequential Access Method (QSAM)

the user's work area to the current record
address, which is then incremented by the
length of the record.

Since processing on any PUT macro
instruction is then complete, both CZICSAB
and CZCSAQ issue a RETURN macro instruction
to restore the user's registers and return
to the problem program.

PUTX Macro Processing

Phase 1 - Communication: When a PUTX macro
instruction is issued, the macro expansion
establishes type-1 linkage to CZCSAX, whose
V-con is in DCBPXV. At the entry point,
the user’s registers are saved, and base
registers for QSAM are established. 1If the
PUTX is an update PUTX, it must have been
preceded by a locate mode GET on the same
data set, and therefore cannot be the first
macro issued. Hence, phase 3 is begun by
giving control to the PUTX subroutine. If
it is an output PUTX, a check is made to
see if it is the first macro issued on the
data set, and if so, phase 2 is begun by
giving control to INITIO. Otherwise, PUTX
is invoked. '

Phase 2 - First PUTX - Initialization: The
initialization for the first PUTX on a data
set is accomplished by INITIO in exactly
the same manner as that for the first PUT
on a data set. When initialization is com-
plete, a return is made to CZCSAX, which
then gives control to PUTX.

pPhase 3 - Operation: If the data set on
which the PUTX macro instruction was issued
is opened for oOutput, the associated data
set must be opened for Output, and if it is
the task abnormally terminates by executing
an ABEND macro instruction. The record
which is to be put out must have been
retrieved by a locate-mode GET on the asso-
ciated data set. If it was not, the task
is abnormally terminated. Otherwise, a
flag is set in the output DCB to indicate
that a move-mode PUT is to be performed,
the logical address field of the input DCB
is supplied as the address of the record to
be output, and control is given to the PUT
subroutine (whose operation was discussed
in phase 3 of the PUT macro instruction).

The data set must be opened for Output
and Update, and the last logical record
must have been retrieved by a locate mode
GET; otherwise, abnormal termination
occurs.

A flag is set in the DCB to indicate
that a PUTX has been issued on the current
block. If processing on the current block
is complete, PUTXIO is invoked to write the
updated block back to the data set, and to
read in the next block if called by the GET
subroutine. After the return from PUTXIO,

or if processing on the block was not com-
plete, a return is made to CZCSAX, which
then issues a RETURN macro instruction to
restore the user's registers and link back
to the problem program.

TRUNC Macro Processing

The macro instructions TRUNC and RELSE
require no initialization phase, since they
perxform no functions if they are the first
macro instructions issued on a data set.
Therefore, they will be discussed in only
two phases, communication and operation.

Phase - Communication: The expansion of

the TRUNC macro instruction establishes
type~1 linkage to CZCSAT, whose V-con is
defined within the expansion. The entry
section saves the user's registers, estab-
lishes base registers for QSAM, and gives
control to the TRUNC subroutine.

Phase 2 - Operation: TRUNC makes an imme-

diate return to the entry section
following conditions:

under the

1. If processing on the current
already complete, or has not

begun;

block is
yet

If the record format is undefined;

If the data set is opened for neither
Output nor Update;

If no GET or PUT has previously been
issued on the data set.

Otherwise, if the data set is opened for
UPDATE, TRUNC sets the End of Buffer flag
in the DCB so that the next GET will retri-
eve the first logical record of the follow-
ing block. If the data set is opened for
Ooutput, and if the record format is vari-
able, and if the last PUT was in locate
mode, the last logical record is checked to
be certain it does not overflow the buffer.
If it does, the task is abnormally ter-
minated. In all other cases, the actual
block size is calculated, and PUTIO is
invoked to write out the block.

RELSE Macro Processing

Phase 1 - Communication: The expansion of

the RELSE macro instruction establishes
type-1 linkage to CZCSAR, whose V-con is
defined within the expansion. The entry
section saves the user's registers, estab-
lishes base registers for QSAM, and gives
control to the RELSE subroutine.

Phase 2 - Operation: RELSE makes an imme-
diate return to the entry section if pro-
cessing has not yet begun on the current
block, or if the data set is opened for
Output. Otherwise, it sets the End of

Section 3: Internal Logic 189

PR

. . ; (TR IO that the next GEl
Un the dava ser will retoaeve the fiost
ivgivai record of the following biock.
(ELSE returns to CZCSAR, which issues
TURN macro instruction to restore the

F i caremsm T Ce T E v
e by MSCYO YIoCSEUSANG

he communication phase 1s the same fox
= of SETL macro instructions, but
eration phases must be discussed
= vately. The expansion of each SETL
macro instruction sets a code in the DCB to
rGicate its type (¢, R, P, E cr B), and
cutablishes type-1 linkage to CICSAS, whose
is found in DCRBSLV. The entry sec-
ion saves the user's registers and estab-
25 base registers for ¢SAM. 1t then
control to SETLC, SETLR, SETLP, or
: The routine ABENDs if SETL was not
in the DCB MACRF.
done for SETL.

Single buffer-

C (Current Biocki: The SETIC

1e first invokes CHECK to check the
or write performed, and then
contyoi to BSAM Note (C4CRN) to esta-~
the relative address (TTRZ or ZICC!

1 the data set of the last block read
1. Since that may not be the
currentiy being processed, it must be
ied whether or not additional spac-
wili be needed. The data set is repo~
cned to that retrieval address.

subyrout
Last x

1

1s opened for Outputr,
sitioned o the begin-

> the retrieval address,
the current block wilil always be I
e last block written. The count
1 records already processed within
then returned to the
retrieval address.

1f the data set is opened for Update, a
test must be made to see if the current
record address points to the beginning of
the plock. This is possible only when a
PUiTY wacro instruction, issued on the last

7 of a plock, has caused that block to
i1tten back to the data set and a new
+o pe read in. In this case, a back-
space will be required to retrieve the
blook within which the desired record
resides. Therefore, the count of records
within the last block, with the high order
byt set on to indicate that a backspace is
needed, is returned to the user with the
retrieval address. If the current record
address points within the block, no back-
space is needed, since a GET must already
have been isgued on the block. Hence, the
count of records already processed within
the current block is returned to the user
with the retrieval address.

190 Ppart III:

Since a aata sev opensw Lot faput or
RDBACK employs double baffering, one ol
beyond the current o.g being processec wiii
be the one marked by CZCRN. Theretfore,
either a backspace or a forward Space will
always be required to retrieve the Cusiont
biock. The count ot iecoids procencod
witnhin the current block (with the nigh or-
der bit set on to indicate that a backward
or forward space is needed) is returned ta
the user with the relative address obtained
by CZCRN.

When processing is coinplete, a retuoa 16
made to CZCSAS, which then issues a RETURN
macro instruction to restore the user's
registers and link back to the problem
program.

SETL Type-R (Retrieval Address): The SETLK
subroutine first invokes TREOV to clear any
outstanding I/0 reguests. Then, using the
retrieval address provided by the user as a
parameter, the SETLR subroutine invokes
POINT to reposition the data set to the
block specified by the retrieval address.
If a backward or forward space is required
{see SETL type-C for the manrer in which
this is determined), either Backspace is
invoked to backspace one block, or Contyol
is invoked to forward space one block.

Following this, the original open option
is saved, and if the data s&t is opened o
Output, the open option is set to indicate
that the block to which the data set is now
positioned must be read back in. INITIO is
invcocked to set up new DECBs and iniciate a
read of the desired block. INITIO wili
function as it does in phase 2 of the GET
macro instruction, except in the case of an
output data set, when it sets tne DECB type
code to "read®™ and invokes Read/Write to
read in the desired blcock and GETIO to
check it.

When INITIO returns control to SETLR,
the current record address points to the
first record of the block. The recoxrd
count provided by the user is then
decreased by one, and if the result 1is not
zero, the Get subroutine is inveoked to cal-
culate the address of the next logical
record. Again the record count is
decreased by one, and GET is invoked
is not zero. When the record count raac
zero, the current record address poin
the desired record. At this point, the
original open option is restored, and, if
the data set is opened for Output, the DECB
type code is reset to "write". A& return is
made to CZCSAS, which issues a RETURN wmacro
instruction to restore the user's registers
and link back to the problem program.

SETL Type-P (Previous Record): The SETLP
subroutine first checks to see if proces-
sing has begun on the current buffer. I1f

Queued Sequential Access Method (QSAM)

so, the previous record must be within the
~urrent hlock. Its address is calculated,
the record count within the block is
decreased by 1, and a return is made to
CZCSAS.

1f the current buffer is empty, however,
-he previous record lies within the last
olock processed. In this case, TREOV is
invoked to clear any outstanding I/0
requests. Upon return from TREOV, if the
Writé Request flag in the DCB is on, an
immediate backspace of one block is made.
1f the data set is opened for RDBACK, Con-
trol is invoked to space forward one block.
if the data set is opened for Input, Check
1s invoked to check the last read and then
Backspace is invoked to backspace the data
set three times, since it is positioned at
the end of the third block beyond the one
in which the desired record lies. If the
data set is opened for Output, it is posi-
tioned at the end of the block containing
the desired record, and BSP is therefore
invoked to backspace one block. If any
positioning errors occur, SYNAD is inwvoked.

When the data set 1s correctly posi-
tioned, the open option is saved, and if
the data set is opened for Output, the open
option is temporarily set to Input. INITIO
is invoked to build new DECBs and initiate
a read of the desired block. Then GET is
invoked to calculate the next record
address until the End of Buffer flag is on,
at which time the data set is opened for
output, the original open option is
restbred, the DECB type code is reset to
*write”, and Flush is invoked to purge out-
standing read requests. Finally, for all
OPEN options, the End of Buffer flag is set
off, and a return is made to CIZICSAS, which
issues a RETURN macro instruction to
restore the user's registers and link back
to the problem program.

SETL Type-E or -B (End or Beginning): The
SETLEB subroutine makes an immediate return
to CZCSAS, if the data set is opened for
output and type-E is specified. Otherwise,
TREOV is invoked to clear all outstanding
write requests. Then, if the device is
direct access, register 0 is set to zero
for type-B, and Point is invoked to posi-
tion the data set at the beginning or the
end.

1f the device employs magnetic tape, and
the data set is opened for Rdback, and
type-B is specified, it must be spaced bac-
kward to the end. If the data set is
opened for Input, it must be spaced back-
ward to the beginning for type-B, or spaced
forward to the end for type-E. Control is
invoked to perform the spacing of a data
set on magnetic tape.

When the data set is correctly posi-
tioned, the Get and Put V-cons in DCBGTV
and DCBPTV, respectively, are set to CZICSAA
and CZCSAB so that the next GET or PUT on
the data set. Then a return is made to
CZCSAS, which issues a RETURN macto
instruction to restore the user's registeors
and link back to the problem program.

CLOSE and FEOV Functions Performed by ¢SAM

puring processing of a CLOSE or FEOV
macro instructions, the TREOV subroutine ot
(0SAM) is used to perform those functions
necessary to closing out a volume or a data
set, sucn as writing out the last buffer ot
an output data set, or purging any read
requests which may have been issued on an
input data set after the CLOSE or FEOV was
issued.

When it is keing invoked by SAM Close or
FEOV, TREOV is given contrecl by the QOSAM
entry section CZCSAV. SAM Close or FEOV
establishes type-1 linkage to CZCSAV, where
base registers for QSAM are established and
contreol is passed to TREOV. {Note that
TREOV is also used internally by other sub-
routines of QSAM during the processing of
OSAM macro instructions, and returns to
whatever routine called it.}

If the data set has been opened for
RDBACK or Input, the Flush subroutine of
TREOV is invoked to purge outstanding 170
requests, and upon return from Flush, the
first Get or Put V-cons are moved into the
pcs, and an immediate returm is made to
CZCSAV, or to the calling subroutine.

if the data set is opened for CQutput and
the current huffer is empty, the last block
of the data set has already been written
out, and, if it has not yet been checked,
the Check subroutine is invoked to perform
the check. Otherwise, or upon return from
Check, a return is made tc the entry rou-
tine or to the calling subroutine. If the
buffer is not empty, it must be written out
as the last block of the data set. 1If the
last PUT issued was in locate mode, and if
the records are variable format, a check is
made to be certain that the last record
placed in the buffer does not overflow the
end of the buffer. If it does, the task is
abnormally terminated. Otherwise, the
actual size of the block is calculated and
PUTIO is invoked to write out the current
puffer and check the previous write. (1f
single buffering is being done, PUTIC wilil
write and check the same puffer.) Upon
return from PUTIO, if any unchecked DECES
remain, Check is invoked to perform the
check. Then a return is made to CZCSAV or
to the calling subroutine.

1f the data set is opened for Update,

and if no PUTX macro instruction has been

Section 3: Internal Logic 191

oy

: on tne current block, TREOV gives
it{ui to Flush to purge any outstanding

3 requests, and then returns to the entry
section or the call:nq subroutine. If a
TX has beer 1ssued on the current block,
ever, the kead/WIite subroutine 1is
cavoked to write the updated block back 4o
the data set, and the Check subroutine is
invoked to check on the completion of the
write reguest. Then the return is made to
2 entry section or the calling
subroutine.

S

N

Part 1II: Queued Sequential Acces:: Method (QSAM)

PART IV

RTAM/MTT ACCESS METHODS SUPPORT

For the MTT user, there is a virtual
storage routine (CZCTC) which performs
functions analogous to access methods Read,
Write, Find, or Close routines. The MTT
command, through the command system, is
processed by this routine, and the CLEARQ
and FREE¢ macro instructions which clear
pending work for a terminal and leogically
disconnect a terminal respactively.

Terminal Task Control Routine (CZCTC)

The Terminal Task Control routine pro-
vides an interface with the Terminal Com-
munications Subprocessor in the resident
supervisor. None of the macro instructions
entered by the MTT user issue their own
1/0, such as Read or write. The method
used by CZCTC is to set information into
the application task's terminal control
table (TCT), and then to issue the ATCS
macro instruction which calls the Terminal
Control Subprocessor to perform the
requested operation.

When processing the MIT enable, communi-
cation with the user is effected through
PRMPT (CZATJ) in order to prompt the user
for unentered or unacceptable parameters.

The processors described are for the MIT
command, and the FINDQ, READG, WRITEQ,
CLEARQ, and FREEQ macro instructions. Each
has a separate entry point in CZICTC (Chart
RA) .

The subroutine, CZCTC7, tests the vali-
aity of the device (line) number for each
of the macro instructions (Chart RA).

MI'T Enable

Entry is the result of the MTT command
given from a terminal, and passed through
the command system. The application pro-
gram is loaded, parameters are checked, the
schedule table level is entered, and the
virtual memory necessary for the task is
reserved. When the application program is
complete it is unloaded, the original sche-
dule table level restored, and the virtual
storage released. (The application program
in this case is the control program for the
multiterminal task operation (Chart RAY.)

Entry Point: CZCTC1l -- From the command
system via type-1 linkage.

Input: Register 1 contains the address of

a L-word parameter list:

SECTION 1: MTT TERMINAL TASK CONTROL

Word 1 -- Address of a program name which
is a maximum of 8-characters long. The
byte preceding this address is a count
of the characters in the name.

Word 2 ~- Address of u-byte count of the
maximum number of terminals which may be
simultaneously connected to the task
(1-4095).

word 3 -- Address of 3-byte schedule table
level (1-255).

word 4 -- Address of 4-byte count of the
size of the input buffer associated with
each terminal line (16-4076), default
200.

Modules Called: Via type-2 linkage, unless

specified:

PRMPT (CZATJ1) -~ Prompt user for parame-
ters, inform user of error.

GETMAIN (CZCGA2) -- Allocate necessary Vvir-
tual storage.

ABEND (CZACP1) -- Abnormal task
termination.

FREEMAIN (CZCGA3) -- Free virtual storage.

There is also a type-1 call to the app-
lication program named in the MTT command.

Exits:
Normal -- Return to the calling routine.

Error --
e Return to the calling routine after
informing SYSOUT that the user is not
authorized to issue MTT.

s Type-2 exit to SYSER followed by a
return to the calling routine, if the
return from a PRMPT call is an error
code.

e SYSER followed by ABEND, if a non-zero
return code is received after a FREEQ
ALL macro is issued.

Operaticn: This text is keyed to the flow-
chart for CZCTIC (Chart RA) and is
referenced by label.

The authority of the user issuing the
MTT is tested and the application program
is loaded or prompted for. The user must
have an '0O' or ‘P' authority
(AOO-ADOX~A01-A02).

Section 1: MTT Terminal Task Ccontrol 195

Tne parameters are tested, and prompted
ioy if necessary (A03-A17-Al1UB).

The number of pages required by the task
i1s computed and allocated, based on the
number of application buffer pages needed
plus the number of TCT pages necessary
(R18-A18A).

The CONN SVC is issued which transfers
control to CEARS to perform initialization
in real-core. The multiterminal system
control block (MISCB) is built and the TCT
and buffer page allocated. If the task is
aiready MTT, it is returned to normal sta-
tus and the CONN is reissued
{T'C1A~TC1B-TC1B1).

The current schedule table level is
saved and the new level entered
{TCLA-TCICY.

The application program, which is the
#T control program, is now dispatched via
a type-1 call.

When tne MTT application returns, it is
vnioaded (DELETE) and FREEQ ALL is issued
to icgicaily disconnect the terminals. The
DCON macyo cleans up wain storage, the ori-
4inal schedule table level is returned, and
the virtual storage is freed.

A veturn is made to the command system.

FINDQ Macro

FINDQ tests a specific line number, orxr
t11ls the MTT application program's work
quenie {TCT) to find a terminal with work to
be done. A return code specifying the work
to be done, or that there is no work to do,
is returned to the calling program.

Ertry Point: CZCTC2 -- Via type-1 linkage.
Input: Register 1 contains the address of

CHAFNQ. FNQCTL (in CHAFQN) is a 2-byte
fieids

FFFF -- Polling operation.

XXXX -~ Unique device number from 0000

to a user-specified maximum.
The system maximum is 4095.

Hodules Called: None.

£xits: Return to the calling routine with
one of the following codes in register 15:

Code Condition
00" No work.
04" Invalid relative line number (not

connected to application).

i96 Part IV:

RTAM/MTT Access Methods Support

‘08" Initial connection of device.

'oc® Attentior from terminal.

10" Solid I/0 erxror on terminal iine.

‘14’ Message Out complete (from previous
WRITEQ) .

‘18° Message In complete (from yrevious
WRITEQ/RESP).

‘ic’ Negative response from input
component.

*20° Message In overflowed buffer.

Operation: If polling is specified, the

TCT slots are scanned for work starting

with the slot after the halt of the pre-
vious scan. The result is returned as a
code in register 15. (See 'Exits.’)

CHAFNQ fields are set with the device
type and symbolic device address.

Message In also sets the length of the
message and its address in CHAFNQ.

If a specific line is to be tested, no
polling takes place if there is no work in
its TCT.

A SYSER is issued if there is work in
the TCT, but it cannot be identified. The
SYSER is followed by a return to the user
with a return code of X'04°.

READQ Macro

READQ posts the read request and asso-
ciated options in the TCT slot and passes
control to the resident supervisor via
ATCS. For any return code other than °"00°,
the read operation has not been initiated.

Entry Point: CICTC3 -- Via type-1 linkage.
Input: Register 1 contains the address of

CHARDQ. RDQDEV (in CHARDQ) is a 2~byte
device {(line) number.

Modules Called: None.

Exits: Return with a code in register 15:

Code Condition

00" Normal completion.

04" Device number invalid, component
select invalid. :

‘o8’ Previous operation incomplete.

‘oc* Attention from terminal.

10° Unrecoverable I/0 error on terminal

line.

Operation: The text is keyed to chart RA,
Entry CZCTC3. References are by label.

The device (line) number, and the Atten-
tion and Previous Operation flags in the
TCT are tested (Entry CZCTC3-TC3A).

parameter fields are tested and set
accordingly (TC3B-TC3G). The Interruption
pit specifies that an application program
will process external interruptions
generated upon completion of a read opera-
tion. The interruptions will be ignored if
it is not set.

The Component Select field specifies a
type of 1050 unit:

0 Any input component
5 Terminal keyboard

6 Reader 1

7 Reader 2

The Terminal Communications Subprocessor
is invoked to perform the operation via
ATCS, and upon completion the result is
tested, and an appropriate code returned
{TC3G-TC3J).

WRITEQ Macro

WRITEQ posts the write requests and
associated options in the application TCT
slot and passes control to the resident
supervisor via ATCS for execution. For any
return code other than '00°, the write
operation has not been initiated.

Entry Point: CZCTCH -- Vvia type-1 linkage.

Input: Register 1 contains the address of
CHAWRQ. WRQDEV (in CHAWRQ) is a 2-byte

device (line) number.

Modules Called: None.

Exits: Return to the calling routine with
a code in register 15:

Code Condition

00" Normal return.

ou’ Invalid relative line number,
Component-Out field.

‘08" Busy, I1/0 outstanding, HIO not
complete.

toc! Attention interruption from
terminal.

*10° Solid I/0 error on line.

‘14 Message length not 1-4080 bytes.

Operation: The text is keyed to the flow-
chart (Chart RA, Entry CZCTCU) by label.

The device (line) number, *break’
option, outstanding 1/0, and 'busy' options
are tested (Entry CZCTCU4-TC43R).

Paraneter options are set in TCT
(TCUU4-TCUC) .

The data is forced into core, and the
ATCS macreo issued to execute the write
operation. The results are tested upon
return from the resident supervisor, and a
code set accordingly (TCuD-TCuC3).

CLEARQ Macro

The status byte of the application TCT
slot is tested for work indications, and
unless a READQ or WRITEQ is in progress,
the contents of the TCT slot are saved and
the byte is set to zero.

Entry Point: CZCTC5 -- via type-1 linkage.
Input: Register 1 contains the address of
CHACLQ. CLQDEV (in CHACLQ) is a 2-byte
device (line) number.

Modules Called: None.

Exits: Return to the calling program with
a code in register 15:

Code condition

*00° Normal return.

‘ou’ Invalid device (line) number.

‘08" Busy, previous READQ or
WRITEQ not completed.

‘oc’ Attention from line.

operation: The device number and ‘busy’
indicator are checked.

The work byte is saved, and the reset
byte also. If a buffer is connected, ATCS
is issued to perform the clear function
{see Chart RA, labels TCS1-TCS5A1) .

A return is made with the appropriate
code.

FREEQ Macro

FREEQ will logically disconnect a spe-
cific terminal, or all terminals associated
with an application program. If specified,
a message is written out to the terminal
before disconnecting. A physical discon-
nect may be requested, whereby the line to
the device will be disabled -- this is
handled in the resident supervisor.

Section 1: MTT Terminal Task Control 197

kntry Point: CZCTCé -- Via type-1 linkage.

Input: Register 1 contains the address of
CHAFRQ. FRODEV (in CHAFMQ) is a 2-byte

device {(line) number.

todulen Cailed: None .

kExits: Return to the calling program with
a code in register 15:

Code Londition
*00° Normal return.
four Invalid device (line) number.

198 Part 1IV:

RTAM/MTT Access Methods Support

08" Disconnect specificd not *jogical’
and not 'physical'.
*ocCe Message specified with zero length.

*10° Message address illegal.

Operation: If the ALL option is set and
the disconnect valid (physical or logical),
the message is tested and ATCS issued to
perform the request.

If a specific line is to be freed, the
Free Function flag is set and the work byte
cleared, before ATCS is issued. {(See Chart
RA, Entry CZCTC6.)

Program Logic Manual
GY28-2016-5

Access Methods

Flowcharts on pages 199-438 were not scanned.

Chart RA.

TCS

EARQ | MACRC

g

&
C20TCT

07AS

CHECK DEVICE
NUMBER

ES

PREVIOUS
OPERATION
STILL OUT

SET RC=X'08"

E_ WORK
BYTE _AND SAVE
RESET BYTE

ANY BUFFER
CONNECTED

i
|
v

SET 'CLEAR
FUNCTION' FLAG

|
§

l

ZATCS -~
‘SVC.%!Q*

PERFORM
REQUESTED

SET RC=X'04a'

s et
‘ RETURN .

i
_

5ET

RO=X'00"

A
CZCTCE
FREEQ | MACRO

PALL?
OPTION SET

=
©,

Terminal Task Control - CZCTC (Page 7 of 7)

TCTX

SET RC=>.'0a°

L

—_
C2CTC 07AS
CHECK DEVICE RETURN (LOCAL}
RUMBER
SET 'FREE
) YES FUNCTION
GOOD LAG . CLEAR
WORK BYTE
0

SET RC=X'04’

SET RC=X'0C’

TCH

VALID
DISCONNECT

TCH2 l

SET RC='08"

4
o] 2
i RETURN ;

SET RC=X'0C’

TCES

FICK UP
DISCONNECT BYTE
AND GET MSG IN

CORE

PICK UP
DISCONNECT BYTE

OPERATION

~ATCS -
-8VC219-
PERFORM
REQUESTED
OPERATION

TCHA

SET RC=X'10Y

SET RC=X'0Q'

SUBRQUTINE

A
czcre?

COMPUTE
ELATIVE SLOT &
TCT PAGE

TC7B

SEARCH FOR FAGE

FREE IN
PROGRESS

SET RC='00'

RETURN (LOCAL}

Flowcharts

439

APPENDIX A: CONTROL BLOCKS USED BY ACCESS METHODS MODULES

CHAADC-Explicit adcon group
used by:
czCcTC-Terminal Task control

CHABCT-BULKOMM Table
used by:
CZCQK-VDMEP

ciABPL-Buffer Page List
used by:
CZCMA-GETBUF
CZCNA-FREEBUF
CZCNB-FREEPOOL

CHADBP-DEB Page
used by:
CZCMC-MSAM Open
CZCMD-SETUR
CZCME-DOMSAM
CZCMG-MSAM Posting and Exrror Retry
CZCMH-MSAM Finish
CZCMI-MSAM Close

CHACLQ-CLEARQ
used by:
CZCTC-Terminal Task Control

CHADCB-Data control Block
used by:

CZCLA-Open Common
CZCLB-Close Common
CZCLD-FEOV
CZCMA-GETBUF
CZCMB-GETPOOL
CZCMC-MSAM Open
CZ CMD-SETUR
CZCME-DOMSAM
CZCMF-MSAM Read/Write
CZCMG-MSAM Posting and Error Retry
CZCMH-MSAM Finish
CZCMI-MSAM Close
CZCNA-FREEBUF
CZCNB-FREEPOOL
CZ COA-OPENVAM
CZCOB-CLOSEVAM
CZCOC-MOVEPAGE
czcob-Insert/Delete Page
CZCOE-REQPAGE
CZCOF-1Insert
CZCOG-Reclaim
c2coJ-Find
CZCOK-Stow
CZCOL-Search
CZCOM-Ext end POD
cZCON-Relocate Members
CZCOD—GETNUMBR
CZCOP-VSAM Open
CZCOQ-VSAM Close
CZCOR-VSAM Get
CZCOS-VSAM Put
CZCOT-SETL
CZCOU-PUTX
CZCOV-FLUSHBUF
CZCPA-VISAM Put

440

CZCPB-VISAM Get
CZCPC-SETL
CZCPE-Read/Write
CZCPI-GETPAGE

CZCPL-Add Directory Entry
CZCPZ-VISAM Open
CZCOA-VISAM close
CZCQE-Search SDST
czcQI-Expand RESTBL
CZCQQ-VAM ABEND Interlock Release
CZCRA-BSAM Read/Write
CZCRB-Control
CZCRC-Check
CZCRG-Backspace
CZCRM-Point

CZCRN—-Note

CZCRP-SAM Posting and Error Retry
CZCSA-QSAM

CZCSB-IOREQ

CZCSC-IOR Open

CZCSD-1I0R Close
CZCSE-IOREQ Posting

CZCWA-ASCII Translation and Conversion

CZCWB-Build Common DEB
CZCWC-SAM Close
CZCWD-DAOPEN
CZCWL-Build DA DEB
CZCWO-SAM Open Mainline
CZCWT-Tape Open
CZCWY-Tape Data Set Label
CZCXD-DA Output EOV
CZCXE-Mainline EOV
C2CXI-DA Input EOV
CZCXN-DA Input LABEL
CczCX0-Tape Output EOV
czCcXs-Set DSCB
CLCXT-Tape Input EOV
CZCXU-DA Output Label
czCXX-Concatenation
CZCYA-TAM Open
C2CYG-TAM Close
CZCYM-TAM Read/Write
czCZbh-TAM Posting

CHADEB-Data Extent Block
used by:

CZCLA-Open Common
CcZCLB-Close Common
CczCLD-Force End of volume
CZCMA-GETBUF
CZCMB-GETPOOL
CZCMC-MSAM Open
CZCMD~-SETUR
CZCME~DOMSAM
CZCMF-MSAM Read/VWrite
CZCMG-MSAM Posting and Error Retry
CZCMH-MSAM Finish
CZCMI-MSAM Close
CZCNA-FREEBUF
CZCNB- FREEPOOL
CZCRA-BSAM Read/Write
CZCRB-Control
CZCRC-Check
CZCRG~-Backspace

CLZCRM-Point

CZCRN-Not ¢

CZCRFP- GAM Poszting and Error Retry
CZCSA-(OSAM

CZCSB- I0OREQ

C2CSC- IOR Cpen

CZCSD~ IOR Claie
CZCSE-IOREQ Posting
CZCWEB-Build Common DEB
CZCWC--S5AM (lose
CZCWD—-DACPEN

CZ2CwWL-Buir1ld DA DEB
CZCWM-Mensage Writer
CZCWO-SAM Open Mainline
CZCWP~-Tape Positioning
CZCWR-Read Format-3 DSCB
CZCWT-Tape Open
CZCWY-Tape Data Set Label
CZCXD-DA Output EOV
CZCXE-Mainline EOV
CZCXI-DA Input EOV
CZCXN-DA Input Label
CZCXS~-5et DSCHB
CZCXT-Tape Input EOV
CZCXU-DA Output Label
CZCXX~-Concatenation
CZCYA-TAM Open

CZCYG-TAM Close
CZCYM-TAM Read/Write
CZCZA-TAM Posting

CHADEC-Data Event Control Block
used by:

CZCMC-MSAM Open
CZCME-DOMSAM
CZCMF-MSAM Read/Write
CZCMG-MSAM Posting and Error Retry
CZCMB~MSAM Finish
CZCMI-MSAM Close
CZCPE-Read/Write
CZCRA-BSAM Read/Write
CZCRB~-Control
CZCRC-Check
CZCRP-SAM Posting and Error Retry
CLCSA-QSAM
CIL2CSBR-IOREQ
CACSD-I0R Close
CZCSE~IOREQ Posting
CZCWC~-SAM Close
CZCWO-SAM Open Mainline
CZCWY~Tape Data Set Label
CZCXE~Mainline EOV
CZCXS-Set DECB
CLCYG--TAM Close
CZCYM-TAM Read/wWrite
CZCZA-TAM Posting

CHADAD-DCR Header
used by:

CZ2CLB-Close Common
CZCOA-OPENVAM
CZCOB-CILOSEVAM
CZCOC-MOVEPAGE
CZCOD-Insert/Delete Page
CZCOFE-REQPAGE
CZCOF-Insert
CZCOG~Reclaim
CZCOJ-Find
CZCOK-Stow
CZCOL-Search

Appendix A:

CZCOM-Ext end POD
CZCON-Reiocate Members
CZCCO~-GETNUMBR
CZCGP~-VSAM Open
C2COL~-VSAM Close
CZCOR-VSAM Get
CZCO5-VSAM Put
CZCCT-3ETL

CZCCU-PUTX
CZCOV-FLUSHBUF
CZUCTA-VISAM Put
CZCEB-VISAM Get
CECIC-SETL
CZCPE~Read/Write
CZCPI~-GETPAGE
CZCPL~Add Directory Entry
CZCPZ-VISAM Open
CZCQOA-VISAM Close
CZCQI-Expand RESTBL
CZCQR-VDMEP

CZCQQ-VAM ABEND Interlock Release

CHADSC~-DSCB Format-1 & -3
used by:

CZCWD-DAOPEN
CZCWL~-Build DA DEB
CZCWO-SAM Open Mainline
CZCWR-Read Format-3 DSCB
CZCXD-DA Output EOV
CZCXI-DA Input EOV
CZ2CX5-Set DSCB

CHADSV-DSCB Format-A & -B
used bpy:
CZCOA~OP eENVAM
CZCOB-CLOSEVAM

CHAEPE~RESTBL External Page Entry
used by:
CZCOC-MOVEPAGE
CZCOE-REQPAGE
CZCOF-Insert
CZCOG-Reclaim
CZCOO-GETNUMBR

CHAFNQ-FINDO
used by:
CZCTC-Terminal Task Control

CHAFRQ-FREEQ
used by:
CZCTC-Terminal Task Control

CHAGSM~General Services Macro Table
used by:
CZCLA~-Open Common
CZCLB-Close Common

CHAICB-Interruption Control Block
used by:
CZCMC-MSAM Open
CZCMD-SETUR
CZCMG—-MSAM Posting and Error Retry
CZCMI-MSAM Close

CHAIOR-I/0O Request Control Block
used by:
CZCMC-MSAM Open
CZCMD-SETUR
CZCMF-MSAM Read/Write

Control Blocks Used by Access Methods Modules

441

CZCMG-MSAM Posting and Error Retry
CZCMH-MSAM Finish

CZCRA-BSAM Read/Write
CZCRB-Control

CZCRP-SAM Posting and Error Retry
C2CSB- I0OREQ

CZCSE-IOREQ Posting

CczCYM-TAM Read/Write

c2ZCZA-TAM Posting

CHAISA-Interruption Storage Area
used by:

CZCEI-VMIER
CZCLA-Open Common
CZCMA-GETBUF
CZCMG-GETPOOL
CZCMD-SETUR
CZ CME-DOMSAM
CZCMF-MSAM Read/Write
CZCMG-MSAM Posting and Error Retry
CZCMH-MSAM Finish
CZCNA~FREEBUF
CZCNB-FREEPOOL
CZCPA-VISAM Put
CZCPB-VISAM Get
CZCPC-SETL
CZCQE-Search SDST
CZCQK-VDMEP
CZCQQ-VAM ABEND Interlock Release
CZCRP-SAM Posting and Erxor Retry
CZCSA-QSAM
CZCSB-IOREQ
C7ZCSE-IOREQ Posting
CZCWD~-DAOPEN
CZCWO-SAM Open/Mainline
CZCWT-Tape Open
CZCWY-Tape Data Set Label
CZCXE-Mainline EOV
CZCXN-DA Input Label
CZCYG-TAM Close
CZCZA-TAM Posting

CHALRi-Data Set Header/Trailer Label 1
used by:
CZ.CWM—-Message Writer
CZCWY-Tape Data Set Label

CHALB2-Data Set HeadersTrailer Label 2
used by:
CLCWY-Tape Data Set Label

CHAMHD-RESTBL Member Header
used by:

C7LCOA-OPENVAM
C7.COB-CLOSEVAM
C7COC~MOVEPAGE
C72COE-REQPAGE
czcoJ-Find
CZCOK-Stow
CZCON-Relocate Members
CZCOO-GETNUMBR
¢zZCcQI-Expand RESTBL
CZCQK-VDMEP
CZCQQ-VAM ABEND Interlock Release

CHAPOD-Partitioned Organization Directory
used by:
CZCOJ-Find
CZCOK-Stow
czCOL-Search

uy2

Cc7ZCOM-Extend POD
CZCON-Relocate Members
CZCOO-GETNUMBR

CHAPOE-Directory Alias Descriptor
used by:
CZCOJ-Find
CZCOK-Stow
CZCOL-Search

CHAPOM-Directory Member Descriptor
used by:
CZCOJ-Find
CZCOK-Stow
CZCOL-Search
CZCON-Relocate Members
CZ COO-GETNUMBR

CHAPVT-Public/Private Volume Table
used by:
C2CEI-VMIER

CHARDQ-READQ
used by:
CZCTC~-Terminal Task control

CHARHD-RESTBL Header
used by:

CZCOA-OPENVAM
CZCOB-CLOSEVAM
CZCOC-MOVEPAGE
czcoD-Insert/Delete Page
CZCOE-REQPAGE
CZCOF-Insert
CZCOG-Reclaim
CZCOJ-Find
CZCOK-Stow
CZCOM-Extend POD
CZCON-Relocate Members
€2 COO-GETNUMBR
CZCOP-OPENSEQ
CZCOQ-CLOSESEQ
CZCOR-VSAM Get
CZCOS-VSAM Put
CZCOT-SETL
CZCOU-PUTX
CZCPA-VISAM Put
CZCPB-VISAM GET
CZCPC~-SETL
CZCPE-Read/Write
CZCPI-GETPAGE
czcPL-Add Directory Entry
CZCP4L-VISAM Open
CZCOA-VISAM Close
CZCQI—Expand RESTBL
CZCQOK-VDMEP
CZCQQO-VAM ABEND Interlock Release

CHASAR-System Activity and Resource Table
used by:
CczZCTC-Terminal Task control

CHASCB~-SAM Communication Block
used by:

CZCWB-Build Common DEB
CZCWC-SAM Close
CZCWD-DAOPEN
CZCWL-Build DA DEB
CZCWM-Message Writer
CZCWO-SAM Open Mainline

CZCWP~Tape Positioning
CZCWR-Read Format-3 DSCB
CZCWT-Tape Open
CZCWV-Volume Sequence Convert
CZCWY-Tape Data Set Label
CZCXD-DA Output EOV
CZCXE-Mainline EOQV
CZCXI-DA Input EOV
CZCXN-DA Input Label
CZCX0-Tape Output EOV
CZCXS-Set DSCB
CZCXT-Tape Input EOV
CZCXU-DA Output Label
CZCXX-Concatenation

CHASDA-Symbolic Device Allocation
used by:

CZCEI-VMIER
CZCMC-MSAM Open
CZCMD-SETUR
CZCMG-MSAM Posting and Error Retry
CZCMI-MSAM Close
CZCQK~VDMEP
CZCRA-BSAM Read/Write
CZCRB-Control
CZCRC-Check
CZCRG-Backspace
CZCRP~SAM Posting
CZCSC~-IOR Open
CZCWB~Build Common DEB
CZCWC-SAM Close
CZCWD-DAOPEN
CZCWL-Build DA DEB
CZCWM—-Message Writer
CZCWP-Tape Positioning
CZCWY~Tape Data Set Label
CZCXS-Set DSCB
CZCYA-TAM Open
CZCYG-TAM Close
CZCYM-TAM Read/Write
CZCZA-TAM Posting

CHASDE-Shared Data Set Entry
ased by:
CZCOA-OPENVAM
CZCOB-CLOSEVAM
CZCQE-Search SDST
CZCQK~-VDMEP
CZCQQ-VAM ABEND Interlock Release

CHASET-BULKIO S-Entry Table
used by:
CZCQK-VDMEP

CHASDM~Shared Data Set Member
used by:
CZCOA-OPENVAM
CZCOB-CLOSEVAM
CZCQE-Search SDST
CZCQK-VDMEP
CZCQQ-VAM ABEND Interlock Release

CHASDS~-Shared Data Set Table
used by:
CZ COA~OPENVAM
CZCOB~-CLOSEVAM
CZCQE-Search SDST
CZCQK-VDMEP
CZCQQ-VAM ABEND Interlock Release

Appendix A:

CHASDT-I/0 Statistical Data Table
used by: -
CZCMG-MSAM Posting and Error Retry
CZCRP-SAM Posting and Error Retry

CHATCM-Task Common Table
used by:
CZCEI-VMIER
CZCQK~'VDMEP
CZCTC-Terminal Task Control

CAATCT-Terminal Control Table
used by:
CZCTC-Terminal Task Control

CHATDT-Task Data Definition Table
used by:

CZCEI-VMIER
CZCLA-Open Common
CZCLB~Close Common
CZCMC-MSAM Open
CZCMI-MSAM Close
CZCOA-OPENVAM
CZCOB~CLOSEVAM
CZCUE-REQPAGE
CZCQE-Search SDST
CZCQI-Expand RESTBL
CZCQK~-VDMEP
CZCQU~VAM ABEND Interlock Release
CZCSC-IOR Open
CZCWB-Build Common DEB
CZCWC-SAM Close
CLZCWD~DAOPEN
CZCWL~-Build DA DEB
CZCWM-Message Writer
CZCWO~-SAM Open Mainline
CZCWP-Tape Positioning
C2ZCWT~-Tape Open
CZCWY-Tape Data Set Label
CZCXD-DA Output EOV
CZCXE-Mainline EOV
CZCXI-DA Input EOV
CZCXO-Tape Output EOV
CZCXS-Set DSCB
CZCXT-Tape Input EOV
CZCAX~-Concatenation
CZCVA~-TAM Open
CZCYG~-TAM Close

CHATOS-Terminal Access Operational Status

Table
used by:
CZCYM-TAM Read/Write
CZCZA~-TAM Posting

CHAVPS-Virtual Program Status Word
used by:
CZCMA-GETBUF
CZCMB-GETPOOL
CZCNA-FREEBUF
CZCNB~-FREEPOOL
CZCRA-BSAM Read/Write

CHAWRQ-WRITEQ
used by:
CZCTC-Terminal Task Control

QWRAR~QSAM Work Area
used by:
CZCSA-QSAM

Control Blocks Used by Access Methods Modules

443

APPENDIX B:

Module
CEAAC- ADDEV

CEAAD-RMDEV

CEARH-Reset

CEAARK-SETAE

CEAAO-1L/0
CALL

CEAHQ-LSCHP/
TSEND

CEAH3-XTRCT

CEAH7-SETXP

CEAIS-SYSER

CEAPU4-LVPSW

CEAP7-AWAIT

CEAP9-TSEND

CEAQU~CKCLS

Lu4

MODULES CALLED BY ACCESS METHODS MODULES
Access Methods Modules That
call this Module: Module

CZICYA
CZCYG

CZCYA
CZCYG

CiCMD
CZICMF
CZCMH
CZICRP
CZICSE
CZCIA

CZCRA
CZCYG

CZCMF
CICRA
CZCRB
CZICRP
CZCSB
CZICYM
CZCZA

czcoc
CZCOD
CZCOH
CzZCOI
czcoJd
CZCOK

CZCRH
CZCYG

czcoc

CZCMF
CZCMG

CZCRP
CICYG
CZCZA

CZCRA

CZCMI
CZCRA
CZCRB
CZCRC
CZCsD
CZCWC
CZICWO
CZCXE

CZCYM

CZCMA
C2ZCMC
CZCNB
CZCcoIl

TAM Open
TAM Close

TAM Open
TAM Close

SETUR

MSAM Reads/Write
MSAM Finish

SAM Posting
IOREQ Posting
TAM Posting

DA Error Retry
TAM Close

MSAM ReadsWrite
BSAM Read/s/Write
Control

SAM Posting
IOREQ

TAM Read/Write
TAM Posting

MOVEPAGE
Insert/Delete Page
Interlock

Release Interlock
Find

Stow

DA Error Retry
TAM Close

MOVEPAGE

MSAM Read/Write
MSAM Posting and
Error Retry

SAM Posting

TAM Close

TAM Posting

BSAM Read/Write

MSAM Close

BSAM Reads/Write
Control

Check

IOR Close

SAM Close

SAM Open Mainline
Mainline EOV

TAM Read/Write

GETBUF

MSAM Open

BSAM Read/Write
Release Interlock

CEARO-TWAIT
CEAA1l-PGOUT
CZAAB-Gate

CZABQ-WTO

CZACP-ABEND

CZAEB-
FINDJFCB

CZCAB-Bump

CLCAP-ABEND

Access Methods Modules That
call this Module

CZCOR
CZCsB
C2CSsC
CZCYM

CZCRC
CZCOB
CZCWM

CZCMD
CZCMG

CZCMH
CZCRH
CZCWM
CZCYA
CZCYG
CZCZA

CZCOA
CZCOB
CZCoC
CZCOoD
CZCOE
CZCOJ
CZCOK
CZCOM
CZC00
CZCOP
CZCOR
CZCOoS
CZC0T
CZCOou
CZICPA
CZCPB
CZCPC
CZCPE
CZCPI
CZCPL
CZCP2
CZCQE
DZCYA
CZCYG
CZCYM

CZCLA

CZICXD
CZCXI
CZCX0
CZCXT
CZCXX
CZCWD
CZCWT

CZCRP

VSAM Get

I0OREQ

IOR Open

TAM Read/Write

Check
CLOSEVAM
Message Writer

SETUR

MSAM Posting and
Exrror Retry

MSAM Finish

DA Error Retry
Message Writer
TAM Open

TAM Close

TAM Posting

OPENVAM
CLOSEVAM
MOVEPAGE
Insert/Delete Page
REQPAGE

Find

Stow

Extend POD
GETNUMBR

VSAM Open
VSAM Get

VSAM Put

SETL

PUTX

VISAM Put
VISAM Get

SETL
Read/Write
GETPAGE

Add Directory Entry
VISAM Open
Search SDST
TAM Open

TAM Close

TAM Read/Write

Open Common

DA Output EOV
DA Input EOV
pa Input Label
Tape Input EOV
Concatenation
DAOPEN

Tape Open

SAM Posting

Access Methods Modules That

Access Methods Modules That

Module Call this Module Module Call this Module
CZCEG-GIVBKS CICWC - SAM Close CZCJIS—-SIR CZCMD - SETUR
CZCMG - MSAM Posting and
CZCEV-GIVBKV C4iCOE - CLOSEVAM Error Retry
CZCMH - MSAM Finish
CZCEK-Extend CZCOE - REQPAGE CZCRH - DA Error Retry
CZCXD - DA Output EOV CZCRP - SAM Posting
CZCFO-Obtain/ CZCWD -~ DAOPEN CZCIT-QLE CZCRH - DA Error Retry
Retain CZCWR -~ Read Format-3 DSCB CZCRP - SAM Posting
CZCXD - DA Output EOV
CZCX1 - DA Input EOV CZCLA-Common CZCMD - SETUR
CZCXN - DA Input Label Oopen CZICXX - Concatenation
CZCXS - Set DSCB
CZCXU - DA Output Label CZCLB-Common CZCMD ~ SETUR
CZCOA - OPENVAM Close CZCXX - Concatenation
CZCOB - CLOSEVAM
CZCMA-GET{BUF CZCZA - GETBUF
CZCGA-VMA CZCLA - Open Common
CICLB - Close Common CZCMC-MSAM CZCLA - Open Common
CZCMA - GETBUF Open
CZCMC - MSAM Open
CZCMI - MSAM Close CZCMF-MSAM CZCHME-DOMSAM
CZCGA - VMA Read/Write
CZCRH - DA Erxor Retry
CZCNB - FREEPOOL CZCMH-MSAM CZCMI -~ MSAM Close
CZCOA - OPENVAM Finish
CZCOB - CLOSEVAM
CZCOC - MOVEPAGE CZCMI~-MSAM CZCLB - Close Common
CZCOP - OPENSEQ Close
CZCPE ~ Read/Write
CZCPL - Add Directory Entry CLCOA-VAM CZCLA -~ Open Common
CZCPZ ~ VISAM Open Open
CZICOM - Extend POD
CZCQI - Expand RESTBL CZCOB-VAM CZCLB - Close Common
CZCSC - IOR Open Close
CZCSD - IOR Close
CZCWB - Build Common DEB CZCOC- CZCOA - OPENVAM
CZCWC - SAM Close MOVEPAGE CZCOB - CLOSEVAM
CZCWD - DAOPEN CZCOR - VSAM Get
CZCWL - Build DA DEB CZC0S - VSAM Put
CZCWO - SAM Open Mainline CZCOT - SETL
CZCWR - Read Format-3 DSCB CZCOV - FLUSHBUF
CZCWT ~ Tape Open CZCPI - GETPAGE
CZCXE - Mainiine EOV CZCQA - VISAM Close
CZCYA - TAM Open
CZCYG -~ TAM Close CZCOD-Insert/ CZCOS - VSAM Put
Delete Page CZCOV - FLUSHBUF
CZ2CJID-DIR CZCMD - SETUR CZCPI - GETPAGE
CZCMF - MSAM Read/Write CZCPL - Add Directory Entry
CZCMG - MSAM Posting and
Error Retry CZCOE~REQPAGE CZCOA — OPENVAM
CZCMH - MSAM Finish CZCOC - MOVEPAGE
CZCMI - MSAM Close CZCOF - Insert
CZCRP - SAM Posting
CZCSD - IOR Close CZCOF-Insert CZCOD - Insert/Delete Page
CZCOM - Extend POD
CZCJII-INTING CZCMI - MSAM Close CZC0O0 - GETNUMBR
CZCRP - SAM Posting
CZCOG-Reclaim CZCOD - Insert/Delete Page
CZCI1,~-LVPRV CZCWD ~ DAOPEN CZCOK - Stow
CZCWO - SAM Open Mainline CZC00 - GETNUMBR
CZCWT - Tape Open
CICWY - Tape Data Set Label CZCOH~ CZCOA - OPENVAM
"CZCXN - DA Input Label Interlock CZCOC - MOVEPAGE
CZCXU - DA Output Label CZCOD - Insert/Delete Page
CZCYA - TAM Open CZCOJ - Find

Appendix B: Modules Called by Access Methods Modules U445

Module

(ICOI-Release

Interlock

CZCOJ-Find

CZCOK-5tow

CZCOL-Search

CZCOM-Extend
POD

CZCON-
Relocate
Members

CZCO0~-
GETNUMBR

CZCOP~
VSAM Open

CZ2COQ~
VSAM Close

CZCOR~
VSAM Get

CZCOB~
VSAM Put

CZCOT-SETL

CZCOU~PUTX

CZcov-
FLUSHBUF

CZCPA~
VISAM Put

446

Access Methods Modules That
Ccall this Module

CZCOK
CZ2CO00
CZCQE

CZCOA
CZ2COoC
CZCOD
CZC0Jd
CZCOM
CZCOO
CZICQE
CZCQQ

CZCMD
CZCOB

CzCOoJd
CZCQQ

CzcoJd
CZCOK
CZCO00

CZCOK

CZCOM
CZCO00

czcoc
CZCOD

CZCOA
CZCOJ

CZCOB
CZCOK

CZCOP

CicoP
Cz2CO0Q
CZCOT

CZCO0Jd
CZICOP

CZCOP

CZCOQ
CZCOR
CZCO0Ss
CZCOT
Cczcou

CZCPA
CZCLB
CZCPC
CLZCPE
CZCPI1
CZCOQA

Stow
GETNUMBR
Search SDST

OPENVAM

MOVEPAGE
Insert/Delete Page
Find

Extend POD

GETNUMBR

Search SDST

VAM ABEND Interlock
Release

SETUR
CLOSEVAM

Find
VAM ABEND Interlock
Release

Find
Stow
GETNUMBR

STOW

Extend POD
GETNUMBR

MOVEPAGE
Insert/Delete Page

OPENVAM
Find

CLOSEVAM
Stow

VSaM Open

VSAM Open
VSAM Close
VSAM SETL

Find
VSAM Open

VSAM Open

VSAM Close
VSAM Get
vSaM Put
SETL

PUTX

vVIisSaM Put
VISAM Get
SETL
Read/Write;
GETPAGE
VISAM Close

DELREC

Module
CZCPB-
VISAM Get

CZCPC-SETL
CZCPE-Read/

Write;
DELREC

CZCPI-GETPAGE

CZCPZ-
VISAM Open

CZCQA-

VISAM Close

CZCQE-

Search SDST

CZCQF-JFCBVUD

CZCQI -
Expand
RESTBL

CZCRA-SAM
Read/Write

CZCRB-Control

CZCRC-Check

CZCRG-
Backspace

CZCRH-DA

Error Retry

CZCRM-Point

CZCRN-Note
CZCRQ~-FINDR
CZCRR-RELFUL

CZCRS~-FULREL

Access Methods Modules That
call this Module
CZCPC - SETL

CZCOJ - Find

CZCPE - Read/Write; DELREC

CZCMD - SETUR

CZCPA - VISAM Put

CZCPI - GETPAGE

CZCPA - VISAM Put

CZICPB - VISAM Get

CZCPC - SETL

CZCPE - Read/Write; DELREC

CZCOA - OPENVAM

CzCcOoJ - Find

CZCOB - CLOSEVAM

CZCOK - Stow

CZCOA - OPENVAM

C2COB - CLOSEVAM

CZCOK - Stow

CZCQQ - VAM ABEND Interlock
Release

CZCOB - CLOSEVAM

CZCOE - REQPAGE

CZCOA - OPENVAM

CZCoOC - MOVEPAGE

CZCOE - REQPAGE

CZCOJ - Find

CZCRC-Check

CZCSA-QSAM

CZCWY-Tape Data Set Iabel
CZCXS-Set DSCB

CZCRC - Check

CZCSA - QSAM]
CZCWY - Tape Data Set Label
CZ2CXS - Set DSCB

CZCYA - TAM Cpen

CZCYG - TAM Close

CZCSA - QSAM

CZCSA - QSAM

CZCRP - SAM Posting
CZCWL - Build DA DEB
CZCSA - QSAM

CZCSA - QSAM

CZCRG -~ Backspace

CZCRM - Point

CZCRN - Note

CZCXS - Set DSCB

Access Methods Modules That Access Methods Modules That

module Call this Module Module call this Module
CZCRX-VMER CZCMG - MSAM Posting and CZCWV- CZCWC ~ SAM Close
Errox Retry Volume CZCWQ - SAM Open Mainline
CZCRP - SAM Posting Sequence CZCWY - Tape Data Set Label
CZCZA - TAM Posting convert CZCXD - DA Output EOV
CZCXE - Mainline EQV
CZCRY-VMSDR CZCMG - MSAM Posting and CZCXI - DA Input EOV
Error Retry CZCX0 - Tape Output EOV
CZCRP - SAM Posting CZCXT ~ Tape Input EOV
CZCZA - TAM Posting
CZCSA-QSAM CZCLD ~ Force End of Volume CZCXD-DA CZCXE - Mainline EOV
FEOV Cutput EOV
CZCSC-IO0OR CZCLA - Open Common
Open CZCXE~-SAM CZCLD - Force End of Volume
Mainline CZCRC - Check
CZCSD-IOR CZCLB - Close Common EOV CZCWC - SAM Close
Close CZCX1 - DA Input EOV
CZCXI-Da CZCXE - Mainline EOV
CZCTJI-Prompt CZCWY - Tape Data Set Label Input ECV
CZCXI - DA Input EOV
CZCXN-DA CZCWD - DAOPEN
CZCWB-Build CZCWL - Build DA DEB Input Label
common DEB CZCWO - SAM Open Mainline
CZCWT - Tape Open CZCXO-TAPE CZCXE - Mainline EOV
CZCXE - Mainline EOV Output EOV
C2CX0 - Tape OQutput EOV
CZCXT - Tape Input EOV CIZCXS-Set CZCWC - SAM Close
DSCB CZCXD - DA Output EOV
CZCWC-SAM CZCLB - Close Common CZCXI - DA Input EOV
Close
CZCXT-Tape CZCXE - Mainline EOV
CZCWD-DAOPEN CZCWO - SAM Open Mainline Input EOV ‘
CZCWL-Build CZCWD - DAOPEN CZCXU-DA CZCWD - DAOPEN
DA DEB CZCXD - DA Output EOV OCutput CZCXD - DA Output EOV
: CZCXI - DA Input EOV Label
CZCWM~— CZCWP - Tape Positioning CZCXX~- CZCXE - Mainline EOV
Message CZCXD - DA Output EOV Concatena- CZCXI - DA Input EOV
Writer CZCXN - DA Input Label tion CZCXT -~ Tape Input EOV
CZCXX - Concatenation
CZCYAR-TAM CZCLA - Open Common
CZCWO-5AM CZCLA - Open Common Open
Open
CZCYG-TAM CZCLB - Close Common
CZCWP-Tape CZCWC - SAM Close Close
Positioning
CZCYM-TAM CZCYA - TAM Open
CZCWR-Read CZCWD - DAOPEN Write CZCYG - TAM Close
Format-3 CZCWX - DA Output EOV C2CZA -~ TAM Posting
DSCB
SVC-REDTIM CZCMD - SETUR
CZCWT-Open CZCWO - SAM Open Mainline
Tape SYSKA1-TIME CZCWY - Tape Data Set Label

Appendix B:

Modules Called by Access Methods Modules

447

APPENDIX C: ACCESS METHODS MODULE DIRECTORY

This appendix provides an alphabetic listing of the various modules that are used in the
Access Methods. Also provided are the CSECT, PSECT, entry points and chart ID of each
module.

T ¥ ey T hs Al
| Module | | | [Entry }
| ID i Module Name | CSECT | PSECT | Points | Chart 1D
b gmmmmmmmm s -- o -4-- + b
{ CZCEI | VMIER | CZCEIC | CICEIP | CIZCEIl | JB
] | { i] |
| CZCEY | DUPOPEN | CZCEYC | CIZCEYP | CZICEYl | MB
| I | | | |
| CZCEZ | DUPCLOSE | C2CEZC | CZCEZP | CICEZl | MF
| | | | | i
| CzCFT | DELVAM | CZCPTC | CICFTP | CZICFT1 | KF
i | | | I !
} CZCLA | OPEN COMMON { CZICLAC | CZCLAB | CzcLAO | AA
| i] | | {
| CICLB | CLOSE COMMON | CzCcLBB | CIZCLBP | CIZCLBC | DA
| | | | | i
j czcub | FORCED END OF VOLUME { czcLpc | CICLDB i CZICLDF | FA
i | | | I i
| CZCMA | GET A BUFFER | CZICMAC | CZCMAB | CICMAG | HB
| | | I | SYSMAG |
. I P Rl
{ CzcMB | GET A BUFFER POOL | C2cMBB | CICMBP | CacMBG | HA
| | | | | SYSMBG |
. R D Rl

i
| CzCMC | MSAM OPEN | czcMcC | CzCMCP | CicMCl | AI
! | | | | |
| CczZcMp | SET UNIT RECORD | cizcMpc | C2CMDP | CZCMDl | AJ
] | | | { czcMp2 |
i] | | | czcMp3
] i | | | |
| CZCME | DOMSAM | czcMEC | | CZCME1 | BB
] I D R
i
! CZCMF | MSAM READ/WRITE | CzcMFC | CICMFP | CZCMF1 | BC
} { | | | i
| czcMG | MSAM POSTING AND ERROR RETRY | CZCMGC | CzCMGP | CZCMGl | cc
. B D R
i
j C2ZCMH | MSAM FINISH | CczcMHC | CZCMHP | CZCMH1 | DC
{ | | 1 | czcMEz |
. R P Rl
;] CzcMI | MSAM CLOSE | CicMIC | CICMIP | CZCMI1 | DD
! i | | | |
2 CZCNA | FREE A BUFFER { CzcMBB | CZCMBP | CICNAF | HC
b i | | | SYSNAF |
. e |
]
| CZCNB | FREE A BUFFER POOL | CZCNBA | CZICNBB | C2CNBC | HD
t | | | | SYSNBC |
§ | % ! |
! CICOA | OPEN VAM | CZCOAC | CZCOAP | CZCOAl | MA
] | i 1 | {
{ czcoB | CLOSE VAM { czcoBC | CZCOBP | CZCOB1 i ME
{ [i i | |
{ €zcoc | MOVEPAGE | cAacocc | czcocp | czcoct | JA
| S - U T, i 4 i

| Gt T T T T T T e e e e e e B Suth B S h Sataaieinshaia e Yoo 1
| Module | i i | Entry i i
| 1D | Module Name i CSECT { PSECT { Points | Chart 1D ;
o e ——— e B s Bt R o e 4
i C€zcop | INSERT PAGE | ©zZCcoDC | CICoDP | CZOOD1l | KA {
i | DELETE PAGE i | | czcop2 | |
i | i i | |]
| CZCOE | REQUEST PAGE | CZCOEC | CZCOEP | CZCOEl1l | KD i
H | f i ! | I
{ CZCOF | INSERT | CZCOFC | CZCOFP | CICOF1T | KB i
i i ,] | | | ‘
{ C2C0G | RECLAIM { Czcoce | CICOGP | CICOoGl | KE i
} | i i i | !
{ CZCOH | INTERLOCK | C2ZCOHC | CZICOHP | CZCOH1 | LA i
| | |] | | i
| C2ZCcOl | RELEASE INTERLOCK | C2COIC | CzCcoIp | CZCOI1 | LB |
i | | i i | i
| CczcoJ | FIND | czcodc i czcogp | CzcoJl | PA i
i | i i i i !
| C2COK | STOW i CIZCOKC | CZCOKP | CZCOK1 | PB I
i | ! {] ! |
{ C2COL | SEARCH | CZCOLC | None { CZCOL1 | PC §
i E | i | czcon2 | ;
i i i | ! i
{ CzCOM | EXTEND POD i C2COMC | C2COMP | CZCOM1 | PD i
{ | i { i | }
| CZCON | RELOCATE MEMBERS i CZCONC | None | CZCON1 | PE !
| i ! | i i ;
i CZCo0 | GETPAGE NUMBER i1 C©2Z2Ccooc | CZCOOP | CZCO01 | PF]
| { | i ; | i
{ CZCOP | OPEN SEQUENTIAL | C2COPC | CZCOPP | CZICOPL ! MC i
’ ‘ i : |
{ C2c0Q | CLOSE SEQUENTIAL | c©czcoQC i CzZCOQP | CICOQ1 | MG i
i | { i i i i
! CZCOR | VSAM GET { CZCORC | None { CZCOR1 | NA i
| | | i { i !
{ CZCoS | VSAM PUT | CZCOsSC | None | c2cost | NB]
H | I i i CZCos2 | i
i | | i ! | !
i CIZCOT | SET LOCATION | CzCOTC | None | CzCOoT1 | NC |
i | i , i j] !
{ CZCOU | PUT EXCHANGE | CZCOUC | None { czcoul | ND i
| |] j |] i
i CZCOV | FLUSH BUFFER(S) [czcove i cCczcovP | C3covl | NE]
§ i | i | } i
i CZCPA | VISA¥ PUT i CZCPAC | None | czcpal | OA i
§ i i i | czcPA2 | i
§ | i i | | i
{ CZCPB | VISAM GET { CZICPBC | None | czcPB1 | OB i
i | { | | | i
i CZCPC | SET LOCATION { CZCPCC | None | czcpcl | oc i
i i I i | czcpc2 | ;
] | | ! |] i
| CZCPE | READ/WRITE | CZCPEC | CIZICPEP | CZCPE1 | oD i
i { DELETE-RECORD i i | CzCPH1I | ;
i § ; ¥ g H
i i { | i
i CZCPI | GETPAGE | CICPIC | CzCPIP | CZCPIL, | OE i
i | END SEQUENTIAL i i | czcpiz, | !
i { RELEASE EXCLUSIVE] i | czcpI3, | i
i | [i | czcppl, | {
| | | | | czcpGel | |
} | | i {] i
{ CICPL | ADD DIRECTORY ENTRY { CZCPLC | CzCPLP | CICPLL | OF ;
i | { i i i i
{ CZCPZ | VISAM OPEN i C2ZCPZC | <CzCPzP | CICPZI1 | MD {
i | { i i i i
| C2CQA | VISAM CLOSE { CZCQAC | CZCQAP | CZCQA1 | MH
i | | { | | i
| C2CQE | SEARCH SDST | CZCQEC | CZCQEP | C2zCQE1l | Jp i
L - —— A L - P — 4 - 4

Appendix C: Access Methcds Module Directory 449

450

CZCQI

CZCQK

CZCRQ

CZCRA

CZCRB
CZCRC
CZCRG
CZCRd

CZCRM

CZCRN

CZCRP

CZCRQ

CZCRR

CZCRS

CZCSA

EXPAND RESTBL

VDMEP

VAM ABEND INTERLOCK RELEASE

BSAM READ/WRITE

TAPE CONTROL
CHECK I1/0
BACKSPACE

DA ERROR RETRY

LOGICALLY REPOSITION TAPE OR
DA DATA SET

NOTE 1D OF LAST RECORD READ
OR WRITTEN

SAM POSTING AND ERROR RETRY

FIND RECORDS PER TRACK

RELFUL

FULREL

GET (The first GET following a

SETL type E or B, the first
GET following a FEOV, or the
first GET on a data set.)

PUT (Entered for the Same PUT
macro instruction as GET
above.)

GET (All those not covered
above.)

PUT
SETLB, E
SETLR
COMIO
SETLP
SETL

SAM CLOSE or FEOV

CZCQEC

CZCQKC

CZCQEC

CZCRAC

CZCRBC
éZCRCC
CZCRGC
CZCRHC

CZCRMC

CZCRNS

|
|
|
]
|
|
|
|
|
|
|
|
|
i
{
|
|
|
{
i
|
|
|
|
{
|
|
{
|
{
|
|
|
|
!

CZCQKP

CIZCQEP

CZCRAP

CZCRBP
(CZCRCP
CZCRGP
CZCRHP

CZCRMP
CZCRNP

CZCRPR

Entry
pPoints

CZICQF1
CZCURL
CZCUK2
CZCQK3
CZCR1
CZCRES,
CZCRAS,
CZCRDS
CZCRBS
CZCRCS
CZCRGA
CZCRH1
CZCRMA
CZCRNA

SYSRNA

CZCRP1
CZCRP2

CZCRQA

CZCSAB

CZCSAG

CZCSAW

CZCSAH

CZCSAQ
CZCSAS

CZCSAV

M1

BA
GD

GC
CB

GB

|
|
|
{
I
I
l
|
|
|
|
|
|
|
CF |
|
|
!
!
|
|
|
|
|
|
|
CA |
|

l

1D

1E

IF

QA

- T T T T T T e e T T T Bttt bbb 1
Module | | { { Entry | |
Ip | Module Name { CSECT | PSECT | Points | Chart ID |
e e e e pmmmmm e e — o .

CZICSA | SETLC | i | czcsaz | QA
| | ; { | i
| PUTX [i | CZCsAl | i
[| } | { l
| TRUNC | i | CZCSA3 | |
{ | i ! ! !
| RELSE i : | CZCSA4 | |
| | i i i !
| INITIO | { | CZcsae | |
| | | i { |
| GET | i { CZCSA7 | i
| | | |] |
| PUT |] | czcsas | i
| | | | | !
| TREOV | i | czcsa9 |
| | i | i |
C2CSB | IOREQ | CZCSBC | <C2CSBP | CZICSB1 | BE |
| | { { CzZCsB2 | !
czCsC | 1IOR OPEN | czcscc § oczcsce | czcscl | AL |
| | { f i {
CZCSD | IOR CLOSE | CzCcsSDC | CZCSDP | CZCSD1 | DF I
| | i i |]
CZCSE | IOREQ POSTING | CZCSEC | CZCSER | CZCSE1 | CE i
I | ! i | {
CZCTC | TERMINAL TASK CONTROL | czCcTcC | CICTCP | CZCTC1 |} RA !
| | i i | |
| MIT COMMAND | i { CzZcTer i
]] j i { i
| FINDQ MACRO i i | CzcTc2 | i
|] i] { i
| READQ MACRO i i i CIZICTC3 | “
|] { ! { |
| WRITEQ MACRO i] { CZCTCYH | i
| | | | i |
{ CLEARQ MACRO i i { CIZICTCS | i
| | i i | i
| FREEQ MACRO] i { C2CTC6 | i
| | i ! | i
CZCWA | ASCII TRANSLATION AND I CZCWAC | CZCWAP | CZCWAl | GE ;
| CONVERSION | i ; i]
f] i ! i |

i 1

CZCWB | BUILD CR MODIFY COMMON | CZCWBC | <C2CWBP | CIZICWB1 i AE i
| PORTION OF A DEB | i i ! i
| | i i | |
CZCWC | SAM CLOSE | CZCWCC | CIZICWCP ¢ CZCWC1 |} DB {
| | | | | |
CZCWD | DAOPEN { CZCWDC { CIZICWDP | CZCWDP | AD i
| | i] | i
CZCWL | BUILD CR EXTEND DA DEB | CZCWLC CZICWLP | CZCWL1 | AF {
| | i] i ‘ |
CZCWM | MESSAGE AND ABEND PROCESSING | CZCWMC | CZCWMP | CZCWM1 | IcC i
{ |] | | |
CZCWO | SAM OPEN MAINLINE | CZCWOC | CZCWOP | CZCWOl | AB |
| | | i | |
CZCWP | TAPE POSITIONING | CZICWPC | CZCWPP | CZICWP1 | 1A i
| | | | | |
CZCWR | READ FORMAT-3 DSCBs | CZCWRC | CZCRWP | CZCRWP | AG |
|] | | | |
CZCWT | OPEN TAPE i CZCWTC | CZCWTP |} CZCWT1 | AC |
| | | |] i
CZICWV | VOLUME SEQUENCE CONVERT | CZCWVC | CZCWVP | CZCwWV1 | IB i
......... S L RN N | W S U

Appendix C: Access Methods Module Directory 451

e

452

| Module |

i Ip | Module Name

- +- -

{ CzZCWX | TAPE VOLUME LABEL PROCESSOR
i |

o |

{ CZICWY | TAPE DATA SET LABEL PROCESSOR
| |

| |

{ {

] {

| czcxp | DA OUTPUT EOV

| |

| C2CXE | MAINLINE EOV

| 1

| czcxi | DA INPUT EOV

] |

{ CICXN | DA INPUT LABEL PROCESSOR
! |

j CZICXO | TAPE OUTPUT EOV

] |

I c2zcxs | SET DSCB

i i

{ Cc2zCXT | TAPE INPUT EOV

[|

i CZCXU | DA OUTPUT LABEL PROCESSOR
i 1

| CZCxXX | CONCATENATION PROCESSOR
| |

| czcYA | TAM OPEN

| |

| c2c¥6 | TAM CLOSE

i {

| CIZCYM | TAM READ/WRITE

{ |

| czcza | TAM POSTING

L ;'S

|]

CSECT | PSECT
_______ _.+_a-____-__
| CICWXC | CZCWXP
| |
| i
{ i
| CZCWYC | CZCWYP
| i
1 |
i |
i |
| czcXpCc | CZCXDP
] |
| CZCXEC | CZCXEP
| |
| czcXIC | CICXIP
! |
| CZCXNC | CZCXNP
| |
| czCXoC | CZCXOP
i {
| czcxsc | C2CXSP
| |
{ CZCXTC | CICXTP
\ i
| czcxuc | CZCXUP
| |
| czCXXC | C2CXXP
| |
| CzCYA | CICYAP
| i
| czcye | C2ZCYGP
1 {
| czCcYM | CICYMP
{ |
| czcza | CICZAP
;S L

§ Seebetebebababutielaiag |
Entry 1 {
points | Chart 1D |

—- % -4
CZCWX1 | EA |
czcwx2 | |
CZCWX3 | |

| |
cICwWYl | EB |
CICWY2 | |
czcwy3 | |
cCZCcwWYs | |
| |
CZCXD1 | FF |
| |
CZCXEl1 | FB |
| |
czcx1ii | FE {
| |
CZCXN1 | EG {
| |
czcxol | FD |
| !
c2CcXs1 | AH |
] |
CZCXT1 | FC |
i |
cicxul | EH |
| |
czcxx1i | FG |
| |
CZCYA1l | AR |
1 |
CZCYG1 | DE |
! |
czcYMl | BD |
] |
CzC2hl | CD i
i]

APPENDIX D: OQWKAR DSECT AND DESCRIPTION

LYWKAR DSECT
QWKLEN DC A (QWKS2) QWKAR length
QWKBKL Ds F Storage for backward link register
QWKFRL Ds F Storage for forward link register
QWKS14 DS F Storage for Register 14
QWKS1S Ds F Storage for Register 15
QWKSVO DS ¥ Storage for Register 0
QWKSV1 DS F Storage for Register 1
QWKSV2 Ds F Storage for Register 2
QWKSV3 DS F Storage for Register 3
LWKSVY DS F Storage for Register &
QWKSV5 DS F Storage for Register 5
QWKSV6 DS F 5torage for Register 6
QWKSV7 DS F Storage for Register 7
QWKSVS Ds F Storage for Register 8§
QWKSV9I DS F Storage for Register 9
QWKS10 Ds F Storage for Register 10
QWKS11 DS F Storage for Register 11
QWKS12 DS F Storage for Register 12
OWKS13 DS F Storage for Register 13
QWKRES DS F NOTE -~ Reserved word number 1
QWKSTL EQU X'40° SETL in progress flag
QWRCIP EQU X*80° CLOSE in progress flag
DECB1 EQU *
DS OF
DECB2 EQU DECB1+DECSZ (DECSZ is defined within CHADEC as
the size of the DECB)
DS OF
DECB3 EQU DECB2+DECS2Z
ORG DECB3+DECS2
ps of
QWKBKC Ds F Block count of current volume

QWKRE?2 DS P NOTE -~ Reserved word number 2

QOWKGRO DS F Save for (0) between subsections
QWKGR1 DS F Save for (1) between subsections
QOWKGR2 DS F Save for (2) between subsections
QWKGR3 DS F Save for (3) between subsections
QWRGRU DS F Save for (4) between subsections
QWRGRS DS F save for (5) between subsections
QWKGR6 DS F Save for (6) between subsections
QWKGR7 DS F Save for (7) between subsections
QWEKWK1 DS F Working area

QWKWK 2 DS F Register save area

QWKWK3 bs F Register save area

QWKWKAY DS F Register save area

QWKWKS DS F Register save area

QWKWK®& DS F Register save area

QWRWK7 DS F Register save area

LWKWKS DS F Working area

QWKINK DS 11F

QWKEND EQU *

OWKSZ EQU OWLEND--QWKLEN

The QWK area consists of 340 bytes; DCBOWK contains its address. The first 19 words
of the work area are the QSAM general register save area. The address of this save area
is furnished to any called routine in the save area parameter register. These 19 words
will have the same storage protection class as the one assigned to the data set.

In the OWK work area, 36 words are used for the three DECBs used by QSAM. The first
two DECBs (DECB1 and DECB2) are used for all the I/0 operations. They are pointed to by
the addresses in DCBDEl1 and DCBDE2. All read or write operations will use the DECB
pointed to by DCBDE2, and all checking operations will use the DECB pointed tc by DCBDE1L.
The addresses in DCBDEl1l and DCBDE2 are switched after each read or write so that the
check will refer to the current DECB. The third DECB (DECB3) holds the appropriate copy
of one of the other DECBs if a transfer to the user's SYNAD must be made. This copy is
made so the user cannot erroneously alter the original DECB. The address of DECB3 is
contained in DCBDE3.

Appendix D: QWKAR DSECT and Description 453

APPENDIX E:

DESCRIPTION OF FIELDS IN QSAM PORTION OF DCB

This discussion will not attempt to cover those fields used by QSAM which belong to
the common portion of the DCB.

FIELD DISPLACEMENT FROM ZERO (in hexadecimal), QSAM USAGE

DCBRCD 90

DCBEAD

94

DCBLX 98

DCBLXN

DCBBSV
DCBLAD
DCBDE1
DCBDEZ2
DCBDE3
DCBBF1
DCBBF2

DCBBF3

DCBLRS

DCBSVL

DCBQOWK
DCBQFO

DCBQF1

usy

9C

9E
AD
A4
A8
AC
BO
BU

B8

BC

BE

o
(o)
Cc5
DCBWFL
DCBEOB
DCBPTX

DCBCPS

DCBSW1

DCBLM
DCBSYN

DCBAAC

Address of the current logical record within the current block (1 word)

pddress of the end of the current block (1 word)

The complete TTRZ direct address of ZzZCC magnetic tape retrieval address
to be used by SETL (4 bytes)

Logical record count in the last block processed, used by SETL to retri-
eve a particular logical record within a block (2 bytes)

Save area for original contents of DCBBLK (2 bytes)

Address
Address
Address
Address
Address
Address

Address

of

of

of

of

of

of

of

the first byte of the last logical record processed (1 word)
DECB1 (1 word)

DECB2 (1 word)

DECB3 (1 word)

data buffer initially assigned to DECB1l (1 word)

data buffer initially assigned to DECB2 (1 word)

data buffer used for a data set opened for RDBACK with vari-

able format records (1 word)

save area for original contents of DCBLRE (2 bytes)

Length of next logical record for variable format records in a readback

data set

Address of the QSAM work area (1 word)

Reserved for QSAM (1 byte)

Field containing the following QSAM flags (1 byte):

Set

sSet

Set

Set

on

on

on

on

to indicate TREOV issued a write request (bit 0)
to indicate an end-of-buffer condition (bit 1)
by PUTX to indicate a PUTX update was issued (bit 2)

to indicate to SETL that when a POINT is issued, the relative

address should not be incremented by one (bit 3)

Set on after the INITIO subsection is executed for the first time

(bit 4)

set on when a locate-mode GET or PUT is issued (bit 5)

SET ON WHEN SYNAD determines that a block is to be skipped (bit 6)

Set on when SYNAD determines that an erroneous block is to be
accepted (bit 7)

DCBRF2 Cé6 Field containing the following QSAM flags (1 byte):

DCBLSW Set on to indicate to GET that SETIL is specified in DCBMCD (bit 0)
DCBSGB Set on to indicate that single buffering must be done (bit 1)
DCBDNN Set on by PUT to indicate to BSAM READ/WRITE that a channel nine

overflow test should be made (bit 2)

DCBDET Set on by PUT to indicate to BSAM READ/WRITE that a channel twelve
overflow test should be made (bit 3)

DCBQF3 C7 Save area for the contents of the DCBOPI field used by SETL (1 byte)

Appehdix E: Description of Fields in QSAM Portion of DCB U455

INDEX

Where more than one page referznce is
given, the major reference is first.

ABEND
exit from routine (see specific routine)
interlock release 142-143
processing for BSAM 93-94
abnormal end termination (see ABEND)
abnormal termination 54-59
abort flag 64
access dependent open processing
access method phases u-5
Close 5
Open U
Posting U-5
Read/sWrite 4
add data set or member entries to
spsT 111,116-117
Add Directory Entry routine
(CZCPL) 162-163
chart 398-399
add member or alias descriptor 168
ADE (Add Directory Entry) routine
(CZCPL) 162-163
chart 398-399
alias descriptor entry in POD 167
allocate virtual storage algorithms 20-21
alternate path retries 47,48
ASCII interface in BSAM 7
ASCII translation and converstion routine
{(CZCWA) 86-87
chart 321-323
assign pages to data set 110
asynchronous interrupt routines 10
ATCS macro use 195
attention flag 64

136

Backspace 149

packspace (BSP) routine (CZCRG)
chart 319

Basic Sequential Access Method
construct channel program 28
introduction 3
IOCAL use 28-30
modules invoked by QSAM
overview 7-8
routines (see specific routine)
special routines T4-95

beginning 149

bilocking factors for MSAM 9

blocking logical records 182

BREAK operand of TAM Write 40

BSAM (see Basic Sequential Access Method)

BSAM Read/Write routine (CZCRA) 28
chart 223-226

BSP (Backspace)
chart 319
macro instruction 6
routine (CZCRG) 85-86

85-86

177

456

buffer allocation flag 42
buffer area 44

puffer page 8

buffer size computation

BSAM 86
MSAM 9
TAM 62

buffer specification 62
buffering 86

buffering, single or double 183-185

BUFTEK 62

Build Common DEB routine (czcwp) 17
chart 210

Build DA DEB routine (CZCWL) 18
chart 211

building and maintaining a VAM data
set 119
building the RESTBL 135
bus out check
DA 52
MSAIM
printer
reader, punch
2400 tape 48

55,57-59
54-55,56-57

card punch configuration specification
carriage return 62
catalog entry release 124
CCW

BSAM 29

IOREQ 41

MSaM 34

TAM 36

TAM CCW trace list 61
CHADCB 109
CHADHD (DCB header) 111-113
CHAEPE (external page entries)
chaining &4
chaining check

DA 52

2400 series tape 50
CHAISA (interrupt storage area)
CHAMHD (member headers) 111
channel command word (see CCW)
channel control check 56
channel data check

MSAM 56

2311, 2314,
channel end 61
channel failure 60
channel program

BSAM Read/Write 28

DA Write 29

MSAM 33
channel program generator 36,38
channel program index table 38
CHARHD (RESTBL header) i13
CHATDT (task data definition table)
check (and posting) processing 46-67
Check routine (CZCRC) 66

chart 278

111

108

2302 51

108

21

check subroutine 186 CZCMB (GETPOOL) 87,324

CLEARQ macro processor 197 CZCMC (MSAM Open) 19,214
Close CZCMD (Set Unit Record) 21,216
BSAM overview 7 CZCME (DOMSAM) 30, 227
duplicate DC8 141 CZICMF (Read/Write, MSAM) 34,237
tinal processing 140 CLCMG (MGAM Posting) 54,264
last open DCB 140 CZCMIE (MGCAM Finish) 69, 284
module interaction 133 CZCMI (MSAM Close) 71,289
phase S CZCNA (FREEBUF) 90,326
processing 68-73 CZCNB (FREEPOOL) 90,327
QSAM 190 CZCOA (OPENVAM) 132,361
SAM 68 CZCOB (CLOSEVAM) 139,369
TAM Close routine 72 CZCOC (MOVEPAGE) 98,336
vaM 139 C2COD (Inserts/Delete Page) 119,351
VISAM 142 CZCOE (Request External Pages) 122,354
VSAM 142 CZCOF (Insert) 120,352
Close Common routine (CZCLB) 68 CZCOG (Reclaim) 123,355
chart 281 CZCOH f(Interlock) 129,359
close temporary 140 CZCOI (Release Interlock) 130,360
CLOSEVAM routine (CZCOB) 139 CZCOJ (Find) 165,400
chart 369 CZCOK (Stow) 168,404
closing last open DCB 140 CZCOL (Search) 171,412
CNTRL (see Control) CZCOM (Extend POD) 172,413
code generator storage parity error CZCON (Relocate Members) 172,414
error 58 CZCO0 (GETNUMBR) 173,415
COMBIN option 7 czcop (VAM Open) 137,367
command reject CZCOQ (VAM Close) 142,375
DA 53 CZCOR (VSAM GET) 144,379
MSAM CZCOS (VSAM PUT) 147,381
printer 58 CZCOT (VSAM SETL) 148,383
reader, punch 57 CZCOU (PUTX) 150,385
2400 tape 49 CZCOV (FLUSHBUF) 150, 386
Common Close (see Close Common) CZCPA (VISAM PUT) 155,387
Common Open (see Open Common) CZCPB (VISAM GET) 157,390
comparison of access methods routines 3 CZCPC (VISAM SETL) 157,392
completion of I/0 7-8 CZCPE (Read/Write Delete Record) 159,394
concatenation of record to data set 101 CZCPI (GETPAGE) 160,396
Concatenation routine (CZCXX) 83 CZCPL {Add Directory Entry) 162,398
chart 316 CZCPZ (VISAM Open) 138,368
CONN SVC, use in MTT 196 CZCOA (VISAM Close) 142,376
Construct (subroutine of BSAM CZCQE (Search SDST) 112,348
Read/Write) 28 CZCQI (Expand RESTBL) 121,353
control block relationship 115 CZCQR (VAM Data Management Error
control blocks Processing) 104,343
access methods area 5 CZCQQ (VAM ABEND Interlock
QSAM 178 Release) 142,377
relationship 115 CZCRA (BSAM Read/Write) 28,223
SAM, TAM, IOREQ 65-7 CZCRB (Control) 28,223
user area 5 CZCRC {(Check) 86,320
vaM 107-113 CZCRG {(Backspace) 85,319
VISAM 152 CZCRH (DA Error Recovery) 50,257
VPAM 164 CZCRM (Point) 84,318
Control routine (CZCRB) 86 CZCRN (Note) 83,317
chart 319 CZCRP (Posting, BSAM) 46,245
control table interlocks 128 CZCRQ (FINDR) 94,333
CPG (channel program generator) 36,38,40 CZCRR (RELFUL) 95,334
CPIT (channel program index table) 40 CZCRS (FULREL) 95,335
CSW zero 56 CZCSA {(QSAM) 179,417
cylinder end 53 CZCSB (IOREQ) 41,244
CZCEI (Virtual Memory Input Error) CzCsSC (170 Request, Open) 26,222
Recorvery) 102,340 CZCSD (1/0 Request, Close) 73,292
CZCEY (DUPOPEN) 136,366 CZCSE {(Posting, IOREQ) 65, 277
CZCEZ (DUPCLOSE) 141,374 CZCTC (Terminal Task Control) 195,433
CZCFT (Delete a VAM Data Set) 124,356 CZCWA (ASCII Translation and
CZCLA (Open Common) 14,200 Conversion) 86,321
CZCLB (Close Common) 68,281 CZCWR (Build Common DEB) 17,210
CZCLD (Force End of Volume) 79,309 CZCWC (SAM Close) 68,282
CZCMA (GETBUF) 89,325 CZCWD (DA Open, BSAM) 17,208

Index 457

18,211
93,332

(Build DA DEB)
(Message Writer)
(SAM Open) 15,202
{(Tape Positioning)
(Read Format-3 DSCBs)
(TAPE OPEN) 16,206
(Volume Sequence Convert)
{Tape Volume Label) 74,294
(Tape Data Set Label} 74,298
(DA Output EOV) 82,314
(Mainline BOV) 79,310

(DA Input EOV) 82,313
(DA Input Label Processor)
(Tape Output EOV) 81,312
(set DSCB) 19,213

(Tape Input £OV) 80,311
(DA Output Label Processor) . 78,308
{Concatenation Processor) 83,316
(TAM Open) 24,221

(TAM Close) 72,291

(TAM Read/Write) 35,242

(TAM Posting) 60,275

CZCWL
CZCWM
CZCWO
CZCWP
CZCWR
CICWT
CZCwWV
CZCWX
CZCWY
CZCXD
CZICXE
CZ2CXI
CZCXN
CZCXO
CZCXSs
CaCaT
CZCXU
CZCXX
CZCYA
CZCYG
CZCYM
CZICZA

91,328
19,212

92,331

18,307

DA Error Recovery routine (CZCRH) 50
chart 257
contingent processing
general processing 50
DA Input POV routine (CZCXI) 52
chart 313
DA Input Label Processor routine
(CZCXN) 78

51-54

chart 307
DA Open routine (CZCWD) 17
chart 208
DA Output EOV routine (CZCXD) 82
chart 314
DA Output ILabel Processor routine (CZCXU) 78
chart 308

DA Read/Write (see BSAM Read/Write) 27

DAIN (DA Input EOV) routine (CzZCXI) 82
chart 313

DAOV (DA Output EOV) routine (CZCXD) 82
chart 314

data check

MSAM
printer 56
reader, punch 57
2311, 2314, 2302 51

2800 tape 49
Data Control Block
primary/secondary
QSsaM 178
SAM, TAM,
VAM 109
visaM 152
VSAM 145
data convertec check 49
Data Event Control Block
check (interceptions) 66
IORRO §2
MSAM 11,34
OSAM 178
queue (IOREQ) 42
SAaM 28
VISAM 152 -
Data Extent Block
building of

136

{OREQ S

458

common 17
DA 18
SAM 15
tape 16
DA size algorithm 18
modify 18
page and workpage layocut 20
processing 18
QSAM 178
SAM 6
data group €9-71,8
data movement from buffer
Data Set Control Block
Read Format-3 DSCB 19
SAM processing 19
SeT DSCB 19
VAM 118
data set labels 74-79
data set maintenance 119-12¢
data set page release 125
data set sharing 127-131,102,112-117
DCB (see Data Control Block)
DCB header 112
chaining of 135
interlock summary 143
DCB macro, control block building 3
DCBD macro, control block building 3
DCBRCX 22-24,70-71
DCBSUR 22-24
DEB (see Data Extent Block)
deblocking logicai records 183
DECB (see Data Event Control Block)
DECB queue 42
delete external page entries 123
delete member or alias descriptor 168
delete VAM data set 124
delete VISAM record (CZCPE)
chart 394
DELPAGE (Insert/Delete Page) routine
{Czcop) 119
chart 351
DELVAM (Delete a VAM Data Set) routine
(CZCFT) 124
chart 356
device end 61
DFTRMENT macro,
DILBL (DA Input
(CZCXN) 78
directory
change VISaM
vaM 1135
VISAM 153
VPAM 364
directory page assigyrment 132
disable 39
disconnect M3T terminal 197
DOLBL (DA Ouirput Label Processor) routine
(czcxuy 78

42-45

159

control block building 3
Label Processor) routine

162

chart 308
DOMSAM routine (CZCME) 30
chart 227

GET processing 30

PUT processing 32

error reccrding 33

unit check, exception 31
double buffering 183-185
DSCB (sce Data Set Control Block)
DUPCLOSE routine (CZCEZ) 141

chart 374

duplexing 103

DUPOPEN routine (CZCEY} 136
chart 366

dynamic buffering 62

edit phase 44
enable 39
end of block 63
end of data set 149
end of file (EOF) 72
end of line 63
end of transmission 63
end of volume processors
Check 66
SAM overview 8
enter table 108
EQV (see end of volune)
EPE 110
equipment check
DA 52
2400 tape 48
MSAM printer 58
reader, punch 57
error retry and recovery
BSAM 4,47
IOREQ 65
MSAM 33,34,54-59
Posting 46-67
TAM 60-65
VAM 103-107
ESETL 160
Event Control Block {see DECB)
Expand RESTBL EXPRES routine (CzCQI) 121
chart 353
Extend POD routine (CZCOM) 164
chart 413
External Page Entry 110
EXTPOD (Extend POD) routine (C2COM) 172
chart 413

79-83

Fence Sitter
Q8aM 179
VAM 107

FEOV 191

FEOV (Force EOV) routine (CZICLD) 79
chart 309

£ile protect 54

find records per track 94

Find routine (C2COJ} 105
chart 400

FINDQ macro processor 186

FINDR routine (CZCRQ} 94
chart 333

Finish (CZCMH) 69
chart 284

fixed-length records
vsaM 137
VSAM GET 147

Flush 186

FLUSHBUF routine (CzZCoOV) 150
chart 386

Force End-of-Volume routine (CZCLD) 79
chart 309 -

form type F 58

format, VAM volume 118

tormat-g DSCB 118

format-¥ DSCB 118

FREEBUF routine (CZCNA) 90
chart 326

FREEPOUL routine (CZCNB) 90
chart 327

FREEQ macro processor 197

FULREL rouvtine (CZCRS) 9%
chart 135

general services macro table (CHAGSM) 14

GET 187
Get Member Page Number routine (CZCO0O)
chart 415
GET routine (CZCOR) 144
chart 379
GET routine (CZCPB) 157
chart 379
GET/PUT
BSAM macros 3
QSAM 187-189
GETBUF routine (CZCMA) 89
chart 325
GETIO 187
GETNUMBR {Get Member Page Number routine
(CZCO0) 173
chart 415
GETPAGE routine (CZCPI) 160
chart 396
GETPOOL (CZCMB) routine 87
chart 324

hardware failure 47
hashing table 165
header labels 75,76

I/0 completion 7
I/0 interrupt 46
1/0 request
buffering 12
chaining rules &4
Check used with 13
close 13
Close routine 73
edit phase 44
introduction 3
macro 26,12
Open routine 23
overview 12
posting overview 12
posting routine 65
I/0 request control block (IORCB)
chaining 9
SAM general 7
use in posting 46-67
170 statistical data table 7
1/0 Supervisor

BSAM 46
MsSAM 34
IOREQ 12

inboard failure 60
incorrect length
DA 52
MSAM printer, reader, punch 60
2400 tape 50
inhibit 39
input/output request control block (see

Index

173

459

TORCHS

{asertsuelete Page (INSDEL) routine
; 119

351

routine (CZCOFY 120

352

control check 56

youtine (CZCOHY 129

359

summary (DHDY 143

control table 128
EOn 164
read 127
release after ABEND 143
rolease page level 160
wiite 127
interyuption storage area 108
intervention required
DA 52
MSAM
printex 58
reader, punch 56
Zuu0 tape E8-49
INTLE (Interlock) routine {CZCOHY 129
chayt 359
jok Close youtine (C2CSby 73
292
soutine (CZCSCy 26
222
. 170 request control block)
170 request)
cine {CZCSB) 41

rerruption Storays Area) 108

5 & 126

coptrol Block (JFCB) 6-13
rion of 6

3 12

processors T4-79
T 7e-77

Te-TF7

¢ or alias 165
] 31
goar e vecord 157

M ocuntrol character 35
instyuctions

B 17

SAM IS0 05

VISAEM 152

YBAEM 164

VEAM 1y

Mainline EOV routine (CZCXE) 79

860

chart 310
master exception flag 64
member descriptor 165
locate (FIND) 165
member header (MHD) 112
VPAM 65
message control table 94
message handling 93
Message Writer routine (CZCWM) 93
chart 332
missing address marker 53
module interaction
VAM CLOSE 133
VAM OPEN 133
MOSEARCH 171
MOVEPAGE routine (CZCOC) 98
chart 336
output operation 100
non-output operation 101
MSAM (see Multiple Sequential Access
Methods)
MSAM Close routine (CZICMI) 71
chart 289
MSAM Finish routine (C2ZCMH) 69
chart 284
MSAM Open routine (CZCMC) 19
chart 214
MSAM Posting and Error Retry routine
(CZCMG) 54
chart 264
device dependent processing
printer 57
reader or punch 56
general processing 54
MSAM Read/Write routine (CZCMF} 34

chart 237
MSGWR (Message Writer) routine (CZCWM)
chart 332

MTT, access methods support 193
MTT command processor 195
multiple phase message 94
Multiple Sequential Access Method

block-deblock records 30

buffer size algorithms 9

close 71

data group, grouping 8

DOMSAM 30

Finish 69,10

Get, Put 30-33,9

Open 19

overview 8

posting 54,10

Read/Write 34,9

record format 9

tables 11

unit check, exception 31

unit record 21
Multiterminal Task (MTT) support 193

NCP (number of channel programs) field
new record 156
no path available 56
no record found 52
Note routine (CZCRN) 83
chart 317
number of channel programs 26

93

26

e cam

ons/off page locators 153
open
access dependent 136
Common 14
pDr 17
functions 7
phase 4
5 AM 15
Tape 16
unit record 21
VAM 137
VISAM 138
vSAM 137
Open Common routine (CZCLA) 14
chart 200
functions 7
open shared data set 134
OPENVAM routine (CZCOA) 132
chart 361
original path retries 47
outboard failure 61
overflow page 153
overrun
DA 53
2400 tape 49

fage Assignment Table 118

page level interlock 127-128

page locators 153

paging mechanism 99

partitioned Organization Directory 166
alias descriptor 167
hashing table 165
manipulation of (STOW) 168
member descriptor 166

PAT (Page Assignment Table) 118

Permit command 129

PGOUT SVC 100

phases (see access methods phases)

POD (see Partitioned Organization

Directory)

Point routine (CZCRM) 84
chart 318

Point subroutine 186

posting 46-67

BSAM 46 .
IOREQ 65,4
MSAM 54
phase - SAM U
SAM 46

TAM 60

pre-edit checking 44
printer (MSAM Finish) 70
printer configuration 21
program check 57

protection check 57
pseudo-lock (interlock) 128
punch (MSAM Finish) 70

Put (MSAM) 32

put (QSAM) 188

Put routine (CZCPA} 155

chart 387
Put routine (CZCOS)Y 147
chart 381
PUTIO subroutine 187
PUTX 189

PUTX routine (CZCOU) 150

chart 385
PUTXIC 187

JSAM (see Queued Seguential Access Metnod}
OSAM routine (CZCSA) 179
chart 417
Queued Sequential Access Method
buf fers, buffering 178,183
contrcl blocks 178
error conditions 181
general 177
interface 179
internal logic 186
linkage 179
macros 177,187
parameters 181
return codes 181
subsection 180
work areas 178
QWK work area 178

Read Format-3 DSCBs (CZCWR) 19
chaxrt 212
read interlock 127
Read/Write
BSAM 28
DOMSAM 30
intexrception 29
IOREQ 41-u45
MSAM 34
MTT (READQ) 196
phase, macros U
TaM 35
visaM 159
Read/Writes/Delete Record routine
{CZCPE) 159
chart 394
ReadsWrite subroutine 186
READQ macro processor 196
Reclaim routine (CZCOG) 123
chart 355
recovery and error retry
BSAM 5
VAM 103-107
recovery in progress flag 6u
relative external storage correspondence
table 110-112
relative volume number 119
Release Interlock routine (CZCOI) 130-131
chart 360
release read interlock on page 161
release VAM data page 124
release write interlock on page 161
RELEX 161
RELFUL routine (CZCRR) 95
chart 334
Relocate Members (RELMBRS)} routine
(CZCON) 172
chart 414
RELSE {QSAM) 189
Request External Pages ' {REQPAGE)} routine
(CZCOE) 122
chart 354
Resident Terminal Access Method
introduction 3
overview 10

Index 461

terminal task control 195
RESTBL 110-112
building the 135
VPAM 164-165
RESTBL header 110,112
retrieval address 149
retry and error recovery
(see also - Posting)
vaM 103-107
return data to external storage 150
rewrite a logical record 150
KLINTLK (Release Interlock) routine
(czcol) 130-131
chart 360
KTAM (See Resident Terminal Access Method)

SAM Close routine (CZCWC) 68
chart 282
SAM communication block {CHASCB) 8
initialization 15
SAM Open Mainline (CZCWO) 15
chart 202
SAM Posting and Error Retry routine
(CZCRP) 46
chart 245
device dependent errxor procedure 47
general U47-u48
non-normal completion 47
normal completion 47
2000 Tape U8
SCB (SAM communication block) 8,15
SDAT (Symbolic Device Allocation Table) 6
SDSE (Shared Data Set Entry) 115
SDST (Shared Data Set Table) 112
spT (I/0 Statistical Data Table) 7
search code 171
SEARCH routine (CZCOL) 171
chart 412
Search Shared Data Set Table routine
(CZCQE) 112
chart 348 |
search type (M, E, OT ay 171
SEEK Check 52
Set DSCB routine (CZCXS) 19
chart 213
Set Unit Record routine (see SETUR)
SETL 190
SETL routine (CZCOT) 148

chart 383
SETL routine (CZCPC) 157
chart 392

SETUR (Set Unit kecord) routine (CZICND) 21

asynchronous interruption 24

card punch 22

chart 216

printer 22

synchronous interruption 22

ucs 22
SETXP SVC (in Movepage) = 101
SHARE command (VAM sharing) 129
shared data set entry 116
shared data set table 112-117
Sharing 127-129,101-102

PERMIT command 129

spsT 112 .

SHARE command 129
single phase message L

462

SPER routine {see SAM Posting aad Error

Retry) »

SRCHSDST (Search SDST) routine (CZCQE) 112
chart 348

START I/0 failure
MSaM 55
IOREQ 66

statistical data table 7
STOW routine (CZCOK) 168
chart 404
types 169
symbolic device allocation table 6
SYNAD subroutine 186
SYSUCS, SYSURS 9,22

TAIEOV (Tape Imput EOV} routine (CzCXT) 80
.chart 311

TAM (see Terminal Access Method)

TAM Close routine (C7ZCYG) 72

chart 291

TAM Open routine (CZCYA) 24
chart 221

TAM Posting routine (CZCZA) 60
chart 275

TAM Read/Write routine (CZCYM) 35
chart 242

type option 36
TAOEOV (Tape Output EOV) routine
(CZCX0) 81

chart 312

Tape Data Set lLabel routine (CZICWY} 74
chart 298

Tape Input EOV routine (CZCXT) 8¢
chart 311

' Tape Open routine (CZCWT) 16

chart 206

Tape Output EOV routine (CzcXo) 81
chart 312

tape positioning calculation 91-92

Tape Positioning routine (CZCWP) 91-92
chart 328

Tape Read/Write 29

Tape Volume Label routine (CZCWX) 74
chart 294

task data definition table 108-109

TCIT (terminal control information

table) 41

TCP (terminal channel program)

TDT (task data definition table)

(CHATDT) 108-102

temporary DER 16

Terminal Access Methol
bufter length 62
channel program generator
close 72
open 11,24
overview 10-1Z
posting €0,12
Read/Write 35,12
terminal definition 25

terminal channel program 38,41

terminal control information table 41

terminal control table 195

terminal definition 25

terminal library table 37,40

Terminal Task Control routine {czCcTC) 195
chart 433

38,41

36,38

threshold number 48
TLT (terminal library table) 37,40
TOS {terminal access operational status

table) 36,38
track condition check 53
track overrun 53

TRUNC 189
TVOLBL (Tape Volume Label)
{CZCWX) 74

routine

chart 294
UCS {universal character set) 22,35,58
(see also SETUR routine)
undefined operation 61
undefined records 137
VSAM GET 146
unit check
MSAM 58,59
2311, 2314, 2302 52
2400 Tape 48
unit exception
DA 51
flag 64
MSAM 57,58
2400 Tape 50
unit record configuration 21
unit record device (see MSAM)
(see also SETUR)
unit type table 37,40
universal character set 22,35,58

unrecoverable error 58-59
unusual command seguence 57
user routine 83-87

user SYNAD (BSAM Posting) 48
UTT {(unit type table)} 37,40

VAM {see Virtual Access Method)
VAM ABEND Interlock Release routine
{CzZCQQ) 142
chart 377
vaM close module interaction 133
VAM control block relationship 108
VAM Data Management Error Processing
routine ({(CZCQK) 104
chart 343
vAaM facilities 103
vAM interfaces 107
VAM introduction 99
VAM open processing 132-138
VAM volume format 118
VAMABIR (VAM ABEND Interlock Release)
routine (C2CQQ) 142
chart 377
variable length records
vSAaM 137
YSAM GET 147
VCCW list H42,44-45
VDMEF (VAM Data Management Error
Processing) routine (CZCQK) 104
chart 343
VDMER macro use 105
Virtual Access Method

close processing 139-142
introduction 99-117
open processing 132-139

overview 99
virtual data set organization 99
Virtual Indexed Sequential Access Method

contrcl blocks 152
data set organization 153
PCB working storage 152
directory 154
keys 153
on/oft page locators 153
oOVerview, macros Ha
page formats 153154
Virtual Memory Input Error Recovery rout
(CZCEI) 102
chart 340
Virtual Partitioned Access Method
control blocks 164
macros 164
overview 164,102
routines, general 164
Virtual Sequential Access Method
macros 144
overview 102
record formats 144
routines 144
VISAM (see Virtual Indexed Sequential
Access Method)
VISAM Close routine 142
chart 376
VISAM interlock overview 127
VISAM Open routine 138
chart 368
VISAM record relationship 155
VMER (see System Service Routines,
GY28-20187

ine

VMIER (Virtual Memory Input Error Recovery)

routine {CZCEI) 102
chart 340
VOLCVT (Volume Sequence Convert) routine
(CZCWV) g2
chart 331
volume format 118
Volume Sequence Convert routine (CZCWV)
chart 331
VPAM (see Virtual Partitioned Access
Method}
VPAM interlock overview 127
VSAM (see Virtual Sequential Access
Method)
VSAM Close routine 142

chart 375
VSAM Open routine 137
chart 367

VSAM interlock overview 127

write (see Read/Write)
write into application TCT slot 187
write replace by key 159

replace by retrieval address 159
WRITEQ macro processor 197

zero CCW 56

1050 37,40,62

1052-7 73

2302, 2311, 2314 50-~-54

2400 tape 48-50

2701 40

2702
control unit 40
Close 72-73

2741 37,62

Index

92

463

IV

international Business Machinas Corporation

I*ata Processing Division

§133 Westchester Avenus, White Plains, New York 10604
{ti.5.A. anly]

i8M World Trade Corporatian
€21 United Nations Plaza, New York, New York 10017
linternational]

’

SPOylap $saddy Q9E/S WEI

G-910Z'8CAD VSN u!l pajutld

